楼主: a智多星
950 0

Word2vec的核心架构及其应用 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1485
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2017-9-23 21:40:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:神经网络概率语言模型是一种新兴的自然语言处理算法,该模型通过学习训练语料获得词向量和概率密度函数,词向量是多维实数向量,向量中包含了自然语言中的语义和语法关系,词向量之间余弦距离的大小代表了词语之间关系的远近,词向量的加减代数运算则是计算机在"遣词造句".近年来,神经网络概率语言模型发展迅速,Word2vec是最新技术理论的合集.首先,重点介绍Word2vec的核心架构CBOW及Skip-gram;接着,使用英文语料训练Word2vec模型,对比两种架构的异同;最后,探讨了Word2vec模型在中文语料处理中的应用.

原文链接:http://www.cqvip.com/QK/87671X/201501/664407780.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:word VEC 概率密度函数 VEC模型 cqvip 自然语言处理 Word2vec CBOW Skip-gram 中文语言处理

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-14 23:42