楼主: AIworld
625 0

基于小波包分解和Kohonen神经网络的气液两相流流型识别方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-12-28 02:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对传统流型识别方法主观性强和BP神经网络训练受病态样本影响较大的缺点,根据小波包变换能将信号按任意时频分辨率分解到不同频段的特性,提出一种新的气液两相流流型识别方法.该方法首先利用小波包分解对流型的动态压差波动信号进行分析、提取特征,然后将小波包能量特征与Kohonen神经网络结合进行流型识别.对水平管内空气-水两相流4种典型流型的识别结果表明:该方法能有效克服传统识别方法具有的主观性和BP网络的缺陷,具有很好的识别效果,从而为流型的在线识别提供一种新的有效的技术选择.

原文链接:http://www.cqvip.com//QK/94195X/200501/11535884.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:识别方法 神经网络 神经网 BP神经网络 cqvip 流型识别 小波包分解 神经网络 压差波动

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 06:03