楼主: DL-er
445 0

基于神经网络和Dempster—Shafter信息融合的煤岩界面预测 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-5 18:00:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对煤岩界面识别精度无法满足采煤机自动调高的情况,提出采用神经网络融合工作面的三边信息,使用D-S证据理论再将此信息和不断获得的煤岩界面识别信息进行二次融合,从而实现在线融合和在线预测,不断提高预测精度.仿真结果显示:该方法不仅对地质条件好的工作面有效,而且对断层也有一定的适应性;同时,具有优良的容错性.

原文链接:http://www.cqvip.com//QK/96550X/200301/7411253.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:After 信息融合 神经网络 mps dem 煤岩界面 神经网络 D-S理论 长壁开采 采煤机

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 03:52