楼主: AIworld
624 0

一种基于递归分类树的集成特征基因选择方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-8 03:19:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:利用DNA芯片基因表达谱信息识别疾病相关基因,对癌症等疾病分型、诊断及病理学研究有非常重要的实际意义.该文提出了一种基于递归分类树的特征基因选择的集成方法EFST (Ensemble Feature Selection based on Recursive Partition-Tree).EFST可选择多组基于不同样本分布结构的特征基因,结合有监督机器学习中的多分类器集成(ensemble)决策技术,利用提出的衡量特征基因稳定性与显著性测度,集成各特征基因组选择最终的特征基因.应用结肠癌2000个基因的表达谱实验数据分析结果显示:EFST方法不仅具有寻找疾病相关基因的能力和较强的数据维数压缩能力, 而且由支持向量机(SVM)等4种模式分类方法证实EFST方法可以明显地提高疾病鉴别分类的准确率.

原文链接:http://www.cqvip.com//QK/90818X/200405/10282582.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:分类树 Selection Recursive partition Election 递归分类树 特征选择 集成决策 EFST 基因表达谱

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-12 11:50