楼主: AIworld
633 0

一种基于信息论的决策表连续属性离散化算法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-14 15:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:连续属性离散化方法对后续阶段的机器学习和数据挖掘过程有着重要的意义。提出一种新的针对决策表的离散化算法,在该算法中,首先将信息熵用作判断标准,从候选断点集中选择合适的断点,然后删除一些冗余的断点来优化离散结果,在删除过程中为了尽可能保证决策表分类能力不变,使用不一致率对该过程进行控制。最后选取多组实验数据,使用当前流行的分类算法——支持向量机(SVM)对离散化后的数据进行分类预测,并与其它离散算法进行对比,结果表明本算法是有效的。

原文链接:http://www.cqvip.com//QK/92817X/201004/33356044.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:离散化 信息论 支持向量机 cqvip 大家共享 连续属性离散化 决策表 信息熵 不一致率

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-24 19:43