I Introduction to Soft Computing .......................................................................... I
1.1 Basic Concepts of Soft Computing ............................................................. 1
2.2 Combination of Constituents of Soft Computing ........................................ 4
References ......................................................................................................... 8
2. Constituent Methodologies of Soft Computing ............................................... 11
2.1 Elements of Fuzzy Sets Theory ................................................................. 11
2.1.1 Fuzzy Sets and Operations Over Them ............................................... 11
2.2.2 Mathematics ofFuzzy Computing ...................................................... 31
2.1.3 Fuzzy Logic and Approximate Reasoning .......................................... 54
2.1.4 Probability and Fuzziness ................................................................... 80
2.1.5 Fuzzy Sets and Possibility Theory ...................................................... 81
2.2 Foundations ofNeurocomputing ............................................................... 82
2.2.1 Basic Types and Architeetures ofNeural Networks ........................... 82
2.2.2 Learning Algorithms ofNeural Networks .......................................... 88
2.3 Probabilistic COmputing....................................... .......................... ......... 111
2.3.1 Bayesian Approach ........................................................................... 112
2.3.2 Dempster-Shafer Theory ofBelief.. .................................................. 114
2.4 Evolutionary Computing ......................................................................... 119
2.4.1 Evolution Programming and Genetic Algorithms ............................. 119
2.4.2 Computation with Genetic Aigorithms ............................................. 125
2.5 Chaotic Computing ................................................................................. 145
2.5.1 Elements ofChaotic COmputing ....................................................... 145
2.5.2 Non-Linear Dynamics and Chaotic Analysis .................................... 146
2.5.3 Empirical Chaotic Analysis .............................................................. 151
References ..................................................................................................... 152
3. Emerging COmbined Soft Computing Technologies .................................... 159
3.1 Neuro-Fuzzy Technology ........................................................................ 159
3.2 Neuro-Genetic Approach ........................................................................ 170
3.3 Fuzzy Genetic Paradigm ......................................................................... 175
3.4 Genetic Algorithms with Fuzzy Logic .................................................... 185
3.5 Neuro-Fuzzy-Genetic Paradigm .............................................................. 186
3.6 Multi-Agent Distributed Intelligent Systems Paradigm .......................... 193
3.7 Computing with Words Technology ....................................................... 205
References ..................................................................................................... 208
4. Soft Computing Technologies in Business and Economic ............................ 219
Forecasting
4.1 Neuro-Computing and Forecasting ......................................................... 219
4.2 Fuzzy Time Series Based Forecasting ...................................................... 220
4.3 Fuzzy Delphi Method ............................................................................... 228
4.4 Soft Computing Based Forecasting Complex Time Series ...................... 229
4.5 Soft Computing Based Prediction Ensemble for Forecasting in ............. 235
Chaotic Time Series
References ...................................................................................................... 240
5 Soft Computing Based Decision Making and DSS ......................................... 243
5.1 Fuzzy Linear Programming ...................................................................... 243
5.2 Evolutionary Algorithm Based Fuzzy Linear Programming .................... 256
5.3 Fuzzy Chaos Approach to Fuzzy Linear Programming Problem ............. 258
5.4 Fuzzy-Probabilistic Scheduling for Oil Refinery ..................................... 259
5.5 Fuzzy Decision Making ........................................................................... 271
5.6 Multi-Agent Distributed Intelligent System Based on Fuzzy .................. 287
Decision Making
5.7 Soft Computing and Data Mining ............................................................ 294
5.8 Soft Computing Based Multi-Agent Marketing DSS ............................... 297
5.9 Hybrid DSS Based on Simulation and Genetic Aigorithms ..................... 299
5.10 Soft Computing Based Alternatives Generations by Decision ............... 312
Support Systems
References ..................................................................................................... .326
6 Soft Computing in Marketing .......................................................................... 333
6.1 Marketing Analysis of a Customer's Purchasing Behavior ...................... 333
6.2 Customer Credit Evaluation ..................................................................... 335
6.3 Soft Computing Based Fraud Detection ................................................... 338
6.4 Fuzzy Evaluation ofService Quality ........................................................ 341
6.5 Application ofFuzzy Programming to Hospital's Service ...................... 343
Performance Evaluating
References ..................................................................................................... .349
7 Soft Computing Applications in Operations Management .............................. 351
7.1 Application ofFuzzy Logic in Transportation Logistics .......................... 351
7.2 Scheduling Fuzzy Expert Systems with Probabilistic Reasoning ............ 354
for Oil Refineries
7.3 Detection and Withdrawal ofDefect Parts in the Computer ................... 360
Aided Manufacturing of Evaporators
7.4 Genetic Aigorithms Based Fuzzy Regression Analysis and Its ................ 366
Applications for Quality Evaluation
7.5 An Intelligent System for Diagnosis ofthe Oil-Refinery Plant.. .............. 375
7.6 Neuro-Fuzzy Pattern Recognition in Manufacturing ............................... 381
7.7 Soft Computing Based Inventory Control ................................................ 389
7.8 Fuzzy Project Scheduling ......................................................................... 392
7.9 CW Based Decision Analysis on Risk Assessment of an ....................... 397
Engineering Project
References ..................................................................................................... .400
8 Soft Computing in Finance ............................................................................. .403
8.1 Soft Computing Based Stock Market Predicting System ......................... 403
8.2 Fuzzy Nonlinear Programming Approach to Portfolio Selection ............. 406