library(MASS)
library(neuralnet)
library(data.table)
ydata=fread('C:/Users/iPin1995/Desktop/data.csv')
trainingdata1=as.data.frame(ydata)
colnames(trainingdata1) <-c("year","people","car","road","keyun","huoyun")
traininginput <-as.matrix(trainingdata1[1:20,2:4])
trainingoutput <- as.matrix(trainingdata1[1:20,5:6])
trainingdata <- cbind(traininginput,trainingoutput)
trainingdata<- as.data.frame(trainingdata)
net1 <-neuralnet(keyun+huoyun~people+car+road,data=trainingdata, hidden=8,threshold=0.01,stepmax = 5e+04)
data=as.data.frame(trainingdata1[1:22,2:4])
net.results <- compute(net1,data)
print(net.results$net.result)
运行结果为
[,1] [,2]
1 21108.75021 9401.4
2 21108.75021 9401.4
3 21108.75021 9401.4
4 21108.75021 9401.4
5 21108.75021 9401.4
6 21108.75021 9401.4
7 21108.75021 9401.4
8 21108.75021 9401.4
9 21108.75021 9401.4
10 21108.75021 9401.4
11 21108.75021 9401.4
12 21108.75021 9401.4
13 21108.75021 9401.4
14 21108.75021 9401.4
15 21108.75021 9401.4
16 21108.75021 9401.4
17 21108.75021 9401.4
18 21108.75021 9401.4
19 21108.75021 9401.4
20 21108.75021 9401.4
21 21108.75021 9401.4
22 21108.75021 9401.4


雷达卡





京公网安备 11010802022788号







