长假佳时,近130名全国各地的学子齐聚北京,参加陈强教授的“高级计量经济学及Stata应用”四天现场班。这些学员既有博士、硕士(甚至本科生),也有高校教师,乃至教授,以及科研院所与国家机关的精英们。学员们的地域构成堪称天南海北,从东北到西藏,从内蒙到海南,几乎涵盖了祖国各个角落,更不用说腹地。
是什么因缘让大家放弃假期,不约而同相聚北京,参加在外界看来颇具神秘感的高级计量现场班的“六天闭关修炼”?大家在憧憬什么,动力又从何而来?如此高强度的学习,能有多大收获?
2020年10月1日上午,陈强教授甫登讲台,各位学员眼中的迷茫旋即转为惊喜与释然,为这位坊间广为流传的计量男神所深深吸引。陈老师开宗明义地指出,“如果说知识改变命运,那么对于经管类学生来说,应该就是(计量)知识改变命运”。陈老师随后将计量经济学的精髓知识,由浅入深,如数家珍,娓娓道来,丝丝入扣,环环相连,再结合Stata实战与经典案例,不时让学员们豁然开朗,感受顿悟的喜悦。
不妨先来看看,此次“高级计量经济学及Stata应用”现场班的内容简介与课程大纲:
在原有四天班精彩内容基础上(含合成控制法、空间计量、断点回归、拐点回归等等),
本次六天高级现场班又增加了不少全新的前沿内容,包括交互固定效应、因果图、回归控制法、分位数回归、门限回归、控制函数法、局部平均处理效应、机器学习与大数据等。
本次课程有来自70余所院系研究所的近130位老师和同学参加:
直指人心,登堂入室,运用之妙,存乎一心。士别四日,或当刮目相待,Now or Never!
课程信息
时间:2025年8月7-10日(四天)
地点:北京市
授课方式: 陈强老师面授四天+课后无时限亲自答疑
课程资料:课程PPT、数据集、do文档及相关论文
提供发票及配套通知(电子版和纸质版),结业证书
授课安排:上午9:00-12:00;下午2:00-5:00;答疑5:00-6:00
在线抢座:https://www.peixun.net/main.php?mod=buy&cid=271
特色 #1 通过四天心无旁骛的学习,全面而深入地了解高级计量学在因果推断方面的最新方法及Stata案例实操。这是其他短期培训所无法比拟的。
特色 #2 在夯实计量理论基础的同时,迅速将学员们拉到当代计量实证研究的最前沿,使学员们可以先知先觉、决胜未来。
特色 #3 现场班全程由经典教材《高级计量经济学及Stata应用》的作者陈强教授主讲。你或许知道该书因条理清晰、通俗易懂、深入浅出而好评如潮,但只有上过陈强老师课的学生才能体会到,陈老师的现场授课所具有的直指人心之独特魅力,帮助学员立刻进入高级计量的境界,融会贯通,恍然大悟。
课纲概览:
第1讲,随机实验与自然实验。
随机实验是实证研究的黄金标准。
内容:随机实验,自然实验,内部有效性,外部有效性,最小二乘法(OLS),二值选择模型(Probit,Logit)。
案例:班级规模与学习成绩(Hanushek,1999),种族与就业歧视(Bertrand and Mullainathan, 2004),就业经历与未来就业(Pallais, 2014),最低工资与劳动力需求(Card and Krueger, 1994),参军与长期收入(Angrist,1990)。
第2讲,工具变量法。
工具变量法是解决内生性的通用方法。
内容:2SLS,LIML,GMM,弱工具变量,过度识别检验,排他性约束,内生性检验,移动份额工具变量法(shift-share IV,即Bartik IV),异质性工具变量法(局部处理效应,LATE)。
案例:出生季度与教育年限(Angrist and Krueger,1991);殖民者死亡率与制度(Acemogluet al., 2001);经济增长与非洲内战(Miguel et al., 2004);国企改革的作用(Groves et al., 1994);警察与犯罪率(Levitt, 1997);科举制对人力资本积累的长期影响(Chen et al., 2020);美国年轻男子的教育回报(Griliches,1976);进口竞争对美国当地劳动力市场的影响(Autor et al., 2013)。
第3讲,匹配估计量。
本讲介绍基于非混杂性(unconfoundedness)的一系列估计方法。
非混杂性意味着,若控制处理前的特征(pretreatment characteristics),则处理变量不再有内生性。
内容:匹配估计,倾向得分匹配(PSM; Rosenbaum and Rubin, 1983; Abadie and Imbens, 2016),回归调整法(regression adjustment;也称结果回归,outcomeregression),逆概加权法(inverse probability weighting),双重稳健估计(doubly robust estimation)。
案例:就业培训的处理效应(LaLonde, 1986; Dehejia and Wahba, 1999)。
第4讲,断点回归与拐点回归。
由于在断点附近存在局部随机分组,故断点回归的效力接近于随机实验,日益为研究者所青睐(Thistlethwaite and Campbell, 1960; Imbens and Kalyanaraman, 2009; Calonicoet al., 2014)。
内容:精确断点回归,模糊断点回归,密度(操纵)检验,稳健性检验,拐点回归(Nielsen et al., 2010; Card et al., 2015a, 2015b)。
案例:冬季燃煤取暖与人均寿命(Chen et al., 2013);扶贫政策的效应(Meng, 2013);买房落户与户口价值(Chen et al., 2019);美国参议院选举的在位者优势(Cattaneo etal., 2015)。
第5讲,合成控制法。
在评价某处理地区的政策效应时,将控制地区进行最优的线性组合,以构造合成控制地区进行对比,这是估计处理效应的流行方法(Abadie and Gardeazabal, 2003; Abadie et al., 2010)。
内容:比较案例分析,合成控制法,空间安慰剂检验,时间安慰剂检验,混合安慰剂检验(Chen and Yan, 2023),留一稳健性检验。
案例:马里矣尔船运(Mariel boatlift;Card, 1990);西班牙巴斯克地区恐怖活动的经济后果(Abadie and Gardeazabal, 2003);加州控烟法的成效(Abadieet al., 2010);德国统一的政策效应(Abadie et al., 2015)。
第6讲,回归控制法。
与合成控制法类似,但回归控制法使用回归法来构成反事实的控制地区(Hsiao et al., 2012; Hsiao and Zhou, 2019),比合成控制法更为简便易行。
内容:回归控制法,安慰剂检验,含协变量的回归控制法,分位数控制法(Quantile Control Method; Chen et al., 2023)。
案例:香港回归及与中国内地经济整合的效应(Hsiao et al., 2012);德国统一的政策效应(Abadie et al.,2015);四万亿经济刺激的效应(Ouyang and Peng, 2015);上海与重庆房产税试点的效应(Du and Zhang, 2015);高铁开通的政策效应(Ke et al.,2017);房票政策的房价效应(方诚、陈强,2021)。
第7讲,两期DID。
这是最基本的双重差分法模型,也是理解DID的基石。
内容:差分估计量,双重差分估计量,平行趋势假定(Parallel Trend Assumption, PTA),条件平行趋势假定(Conditional PTA),双向固定效应模型,PSM-DID(Heckmanet al., 1997, 1998),逆概加权估计(Abadie, 2005),双重稳健估计(Sant’Anna and Zhao, 2020)。
案例:伦敦霍乱的自然实验;就业培训的政策效应(Ashenfelter, 1978);最低工资立法与劳动力需求(Card andKrueger, 1994)。
第8讲,经典多期DID。
经典多期DID模型包括两组(即处理组与控制组)与两时段(即处理前与处理后),而个体受政策冲击时间均相同;故也称为经典2x2DID。多期DID使得平行趋势假定的检验成为可能,且可使用事件分析法(event study)考察动态处理效应。
内容:平行趋势图,平行趋势检验,安慰剂检验,分组异质性,多期PSM-DID。
案例:漕粮海运与大运河沿线叛乱(Cao and Chen, 2022);人工智能翻译与国际贸易(Brynjolfssonet al., 2019)。
第9讲,交叠DID。
在交叠DID(Staggered DID)模型中,个体受政策处理时间不尽相同,但处理状态不可逆(irreversible treatment),即处理变量只能由0变为1,而不能从1变为0(即不允许政策退出),也称为“吸入式处理”(absorbing treatment)。在此框架下,若存在异质性处理效应(处理效应随个体或时间而异),则双向固定效应模型一般会有偏差,需使用异质性稳健的估计量,即在异质性效应情况下依然成立的估计方法。
内容:静态回归系数的Bacon分解(Goodman-Bacon, 2021),动态回归系数的Sun-Abraham分解(Sun and Abraham, 2021),交互加权估计(Interaction Weighted Estimation; Sun and Abraham, 2021),CSDID估计(Callaway and Sant’Anna, 2021,含结果回归、逆概加权估计,默认为双重稳健估计),二阶段DID(DID2S; Gardner, 2022),扩展TWFE估计(Wooldridge,2021),堆叠回归(Stacked Regression; Cengiz et al., 2019)。
案例:银行管制放松与收入分配(Beck et al., 2010);住院治疗的经济后果(Sun and Abraham,2021);最低工资对青少年就业的影响(Callaway and Sant’Anna, 2021);最低工资对低薪岗位的影响(Cengiz et al., 2019)。
第10讲,一般DID与连续DID。
在一般DID(General DID)模型中,个体受政策处理时间不尽相同,且处理状态可逆(reversible treatment),即允许政策退出(处理变量可由1变为0)。在连续DID模型中,有时所有个体都受到处理,但政策冲击力度不同,可将处理变量视为连续变量(continuous treatment)。
内容:一般DID的估计方法,包括即时处理效应估计(DIDm; de Chaisemartinand d'Haultfœuille, 2020),面板匹配估计(PenalMatch; Imai etal., 2019),插补估计量(Imputation Estimator; Borusyak et al.,2022),反事实估计量(Liu et al., 2022),连续DID的估计方法(Callaway et al., 2021)。
案例:新闻报纸与总统选举投票率(Gentzkow et al., 2011);央地执政党异同与央地拨款(Liu etal., 2022);茶叶价格与性别比例(Qian, 2008);废除科举与革命起义(Bai and Jia, 2016)。
第11讲,DDD与合成DID。
如果平行趋势假定不成立,一种解决方法是同时使用两个控制组,即三重差分法(DDD; Gruber, 1994; Olden and Moen, 2022)。另一解决方法是,对控制组个体进行加权,使得加权后的数据满足平行趋势假定,即合成双重差分法(synthetic DID; Arkhangelsky et al., 2022)。
内容:DDD模型与识别条件,合成DID的模型与估计。
案例:将生育纳入雇主提供医保的政策效应(Gruber, 1994);加州控烟法的成效(Abadie et al., 2010);女性议员与孕产妇死亡率(Bhalotra et al., 2022)。
第12讲,队列DID(Cohort DID)。
对于横截面的微观数据,如果依时间(比如出生年份)定义的队列或组群(cohorts)受到政策冲击时间有先后之别,则可考虑使用队列DID。
内容:队列DID的模型设定,平行趋势检验。
案例:印尼校园建设与教育投资回报(Duflo, 2001),知青下乡与农村教育回报(Chen et al., 2020)。
除了授课满满的干货,课程资料还提供了70余篇陈老师精选的论文帮助大家掌握,每天6小时授课之余答疑无时限:
陈老师的精彩教学,不仅给了学员每天起床的动力,而且甚至能戒掉游戏瘾:
陈老师集知识性、趣味性、幽默感于一体的精彩讲解,极大地激发了学员们的学习热忱:
学员们切身感受到了六天现场班计量知识体系的优化设计,硕果累累,还体会到了计量之美:
课程结束之前,学员们纷纷感叹获益匪浅,相见恨晚,更加坚定了学好计量、做好实证的决心,带着憧憬与跃跃欲试的心情离开了现场班:
就在本次现场班开班之际,陈强老师还收到了一位两次参加现场班的老学员之发自肺腑的感谢信:
经过连续几天授课和课后无时限的Q&A,陈强老师虽然疲惫,但依然带着兴奋在朋友圈发表了内心的感言:
能与陈强老师合作,为大家奉上一场计量盛宴,是经管之家论坛非常自豪的事情,感谢大家对“高级计量经济学及Stata应用”现场班的关注,也希望所有学员实证计量之路一路顺利。
陈强老师亲授“高级计量Stata之因果推断”2024年十一北京现场班占座开启,
详情请联系(根据缴费顺序安排座位哦):
尹老师
电话:13321178792
QQ:42884447
WeChat:JGxueshu
陈强老师简介
陈强,男,1971年出生,山东大学经济学院教授,数量经济学博士生导师。
分别于1992年、1995年获北京大学经济学学士、硕士学位,后留校任教。
2007年获美国Northern Illinois University数学硕士与经济学博士学位。
已独立发表论文于Oxford Economic Papers (lead article), Economica,Journal of Comparative Economics,《经济学(季刊)》、《世界经济》等国内外期刊。
著有畅销教材《高级计量经济学及Stata应用》(第2版,2014),《计量经济学及Stata应用》(2015),《机器学习及R应用》(2020)与《机器学习及Python应用》(2021)。2010年入选教育部新世纪人才支持计划。