我选用的是钢铁板块2010-7-1至2018-7-1的收盘价数据,取对数收益率以后研究分布特征,呈现高峰厚尾,但没有明显自相关关系,随后进行ARCH检验,结果拒绝原假设,采用AR(0)-GARCH进行拟合。结果无论GARCH(1,1)还是高阶GARCH,都没有办法解决残差存在的ARCH效应。请问要怎么办。。
下面是代码和结果
> m2=garchFit(~arma(0,0)+garch(1,1),data = r,trace = F)
> summary(m2)
Title:
GARCH Modelling
Call:
garchFit(formula = ~arma(0, 0) + garch(1, 1), data = r, trace = F)
Mean and Variance Equation:
data ~ arma(0, 0) + garch(1, 1)
<environment: 0x0000000024ef1370>
[data = r]
Conditional Distribution:
norm
Coefficient(s):
mu omega alpha1 beta1
0.015079 0.034245 0.065728 0.925587
Std. Errors:
based on Hessian
Error Analysis:
Estimate Std. Error t value Pr(>|t|)
mu 0.015079 0.032765 0.460 0.64537
omega 0.034245 0.011596 2.953 0.00315 **
alpha1 0.065728 0.009286 7.078 1.46e-12 ***
beta1 0.925587 0.010586 87.438 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Log Likelihood:
-3646.474 normalized: -1.874794
Description:
Sat Dec 01 16:22:48 2018 by user: You
Standardised Residuals Tests:
Statistic p-Value
Jarque-Bera Test R Chi^2 763.2802 0
Shapiro-Wilk Test R W 0.9734339 0
Ljung-Box Test R Q(10) 6.757763 0.7480986
Ljung-Box Test R Q(15) 8.817542 0.8868627
Ljung-Box Test R Q(20) 12.84979 0.8837352
Ljung-Box Test R^2 Q(10) 56.13059 1.94046e-08
Ljung-Box Test R^2 Q(15) 57.63128 6.410778e-07
Ljung-Box Test R^2 Q(20) 59.18346 9.51973e-06
LM Arch Test R TR^2 85.40643 3.801404e-13
Information Criterion Statistics:
AIC BIC SIC HQIC
3.753701 3.765162 3.753693 3.757915
标准化残差平方不通过Ljung-Box检验,存在ARCH效应,LMARCH检验也拒绝原假设。


雷达卡






京公网安备 11010802022788号







