下面是我做的二元GARCH的结果,请问各位高手怎么看啊?小弟不胜感激!
System: UNTITLED
Estimation Method: ARCH Maximum Likelihood (Marquardt)
Covariance specification: BEKK
Date: 04/26/10 Time: 13:24
Sample: 1 714
Included observations: 714
Total system (balanced) observations 1428
Presample covariance: backcast (parameter =0.7)
Convergence achieved after 64 iterations
Coefficient Std. Error z-Statistic Prob.
C(1) 2940.436 18.23997 161.2084 0.0000
C(2) 1067.917 5.653830 188.8838 0.0000
Variance Equation Coefficients
C(3) 3167.943 391.1801 8.098424 0.0000
C(4) 201.1272 76.05827 2.644383 0.0082
C(5) 294.5511 37.43937 7.867415 0.0000
C(6) 0.888100 0.099894 8.890435 0.0000
C(7) 0.886170 0.099657 8.892226 0.0000
C(8) 0.474068 0.031514 15.04300 0.0000
C(9) 0.470670 0.031849 14.77823 0.0000
Log likelihood -9110.872 Schwarz criterion 25.60348
Avg. log likelihood -6.380163 Hannan-Quinn criter. 25.56811
Akaike info criterion 25.54586
Equation: SZ=C(1)
R-squared -0.157069 Mean dependent var 3382.082
Adjusted R-squared -0.157069 S.D. dependent var 1115.152
S.E. of regression 1199.537 Sum squared resid 1.03E+09
Durbin-Watson stat 0.004214
Equation: BP=C(2)
R-squared -0.251128 Mean dependent var 1195.889
Adjusted R-squared -0.251128 S.D. dependent var 255.5483
S.E. of regression 285.8406 Sum squared resid 58255548
Durbin-Watson stat 0.004856
Covariance specification: BEKK
GARCH = M + A1*RESID(-1)*RESID(-1)'*A1 + B1*GARCH(-1)*B1
M is an indefinite matrix
A1 is diagonal matrix
B1 is diagonal matrix
Tranformed Variance Coefficients
Coefficient Std. Error z-Statistic Prob.
M(1,1) 3167.943 391.1801 8.098424 0.0000
M(1,2) 201.1272 76.05827 2.644383 0.0082
M(2,2) 294.5511 37.43937 7.867415 0.0000
A1(1,1) 0.888100 0.099894 8.890435 0.0000
A1(2,2) 0.886170 0.099657 8.892226 0.0000
B1(1,1) 0.474068 0.031514 15.04300 0.0000
B1(2,2) 0.470670 0.031849 14.77823 0.0000


雷达卡





京公网安备 11010802022788号







