解:拆分区间积分
$\displaystyle \int_{0}^{\sqrt{2\pi}}\sin (x^2)dx=\int_{0}^{\sqrt{\pi}}\sin (x^2)dx+\int_{\sqrt{\pi}}^{\sqrt{2\pi}}\sin (x^2)dx,$
而
$\displaystyle \int_{0}^{\sqrt{\pi}}\sin (x^2)dx\geq 0,$
$\displaystyle \int_{\sqrt{\pi}}^{\sqrt{2\pi}}\sin (x^2)dx=\int_{\pi}^{2\pi}\frac{\sin t}{2\sqrt{t}}dt\geq \frac{1}{2\sqrt{2\pi}}\int_{\pi}^{2\pi}\sin tdt=\frac{1}{\sqrt{2\pi}}> 0.$
因此
$\displaystyle \int_{0}^{\sqrt{2\pi}}\sin (x^2)dx>0.$


雷达卡
京公网安备 11010802022788号







