证明:
由已知,有
$f(x+p)=f(x),\int_{(n-1)p}^{np}f(x)dx=\int_{0}^{p}f(x)dx,x=np,(n \to +\infty ,x\to+\infty )$
$\begin{align*}\lim_{x\to+\infty }\frac{1}{x}\int_{0}^{x}f(x)dx&=\lim_{n \to +\infty }\frac{1}{np}\sum_{k=1}^{n}\int_{(n-1)p}^{np}f(x)dx\\\\&=\lim_{n \to +\infty }\frac{1}{np}\cdot n \int_{0}^{p}f(x)dx\\\\&=\frac{1}{p}\int_{0}^{p}f(x)dx.\end{align*}$


雷达卡
京公网安备 11010802022788号







