四川大学2020年数学分析考研试题
证明:
$\because x_{n}=\sin x_{n-1}\leq x_{n-1},0< x_{n}< a< \frac{\pi}{2},$
$\therefore \{x_{n}\}\downarrow ,$且有界,因此,数列有极限。
$\displaystyle \Rightarrow \lim_{n \to \infty }x_{n}=0,$
又(运用Stolz定理)
$\begin{align*}\lim_{n \to \infty }\frac{n}{3}x^2_{n}&=\frac{1}{3}\lim_{n \to \infty }\frac{n-(n-1)}{\frac{1}{x^2_{n}}-\frac{1}{x^2_{n-1}}}\\\\&=\frac{1}{3}\lim_{n \to \infty }\frac{x^2_{n}x^2_{n-1}}{x^2_{n-1}-x^2_{n}}\\\\&=\frac{1}{3}\lim_{n \to \infty }\frac{\sin^2 x_{n-1}x^2_{n-1}}{x^2_{n-1}-\sin ^2x_{n-1}},
\end{align*}$
而
$\displaystyle \lim_{n \to \infty }\frac{x^2\sin^2x}{x^2-\sin^2x}=\lim_{n \to \infty }\frac{x^4}{x^2-(x-\frac{1}{6}x^3+o(x^3))^2}=3,$
因此
$\displaystyle \lim_{n \to \infty }\frac{n}{3}x^2_{n}=1,$
$\displaystyle\therefore \lim_{n \to \infty }\sqrt{\frac{n}{3}}x_{n}=1,$