中科大数学分析3期未试题
解:
1、如果$a=0,$则
$\begin{align*}\int_{0}^{+\infty }\frac{\log x^2}{x^2+1}dx&=2\int_{0}^{1}\frac{\log x}{x^2+1}dx+2\int_{1}^{+\infty }\frac{\log x}{x^2+1}dx\\\\&=2\int_{+\infty }^{1}\frac{\log t}{t^2+1}dt+2\int_{1}^{+\infty }\frac{\log x}{x^2+1}dx\\\\&=0.
\end{align*}$
当$a\neq 0,$则令
$\displaystyle I(a)=\int_{0}^{+\infty }\frac{\log (x^2+a^2)}{x^2+1}dx,$
对$a$求导
$\begin{align*}I'(a)&=\int_{0}^{+\infty }\frac{2a}{(x^2+1)(x^2+a^2)}dx\\\\&=\frac{1}{2a}\int_{0}^{+\infty }(\frac{1}{x^2+1}-\frac{1}{x^2+a^2})dx\\\\&=\frac{1}{2a}\arctan x|_0^{+\infty }-\frac{1}{2a^3}\arctan \frac{x}{a}|_0^{+\infty }\\\\&=\frac{\pi}{4a}-\frac{\pi}{4a^3}.\end{align*}$
$\displaystyle \therefore I(a)=\int_{0}^{a}(\frac{\pi}{4t}-\frac{\pi}{4t^3})dt=\frac{\pi}{4}\ln a+\frac{\pi}{8a^2}.$
2、
$\begin{align*}\lim_{n \to \infty }\sum_{k=1}^{n}\frac{kx}{1+k^2x^2}&=\frac{1}{x}\lim_{n \to \infty }\frac{x}{n}\sum_{k=1}^{n}\frac{\frac{k}{n}x}{1+(\frac{k}{n}x)^2}\\\\&=\frac{1}{x}\int_{0}^{1}\frac{t}{1+t^2}dt\\\\&=\frac{1}{2x}\ln(1+t^2)|_0^1\\\\&=\frac{1}{2x}\ln2.
\end{align*}$
3、由无穷积分的一致收敛判别法,由于$\exists M> 0,$时有
$\displaystyle |\int_{0}^{+\infty }e^{-x}\cos x|< M.$
而
$\displaystyle \lim_{n \to +\infty }\frac{1}{nx^2+\frac{1}{n}}=0.$
所以原积分一致收敛,由此极限与积分可以交换次序,故有
$\displaystyle \lim_{n \to +\infty }\int_{0}^{+\infty }\frac{e^{-x}\cos x}{nx^2+\frac{1}{n}}dx=\int_{0}^{+\infty }\lim_{n \to +\infty }\frac{e^{-x}\cos x}{nx^2+\frac{1}{n}}dx=0.$