解:
作变量变换
$u=x+y,v=x-y,|J|=\frac{1}{2},$
$D':0\leq u\leq 1,-u\leq v\leq u,$
因此
$\begin{align*}I&=\iint_{D}e^{\frac{x-y}{x+y}}dxdy\\\\&=\frac{1}{2}\iint_{D'}e^{\frac{v}{u}}dudv\\\\&=\frac{1}{2}\int_{0}^{1}du\int_{-u}^{u}e^{\frac{v}{u}}dv\\\\&=\frac{1}{2}(e-e^{-1})\int_{0}^{1}udu\\\\&=\frac{1}{4}(e-e^{-1}).\end{align*}$


雷达卡
京公网安备 11010802022788号







