东北师范大学2020年考研试题
解:
(1)、
$\displaystyle \lim_{n \to \infty }\frac{1}{n}\sum_{k=1}^{n}\sqrt{1+\frac{k}{n}}=\int_{0}^{1}\sqrt{1+x}dx=\frac{2}{3}\cdot (1+x)^{\frac{3}{2}}|_0^1=\frac{2}{3}(2\sqrt{2}-1).$
(2)、
$\displaystyle \because (1+\frac{1}{n^2+1}+\cdots +\frac{1}{n^2+n})^n\geq (1+\frac{n}{n^2+n})^n=(1+\frac{1}{n+1})^n=(1+\frac{1}{n+1})^{(n+1)\cdot \frac{n}{n+1}}=e,(n \to \infty )$
$\displaystyle (1+\frac{1}{n^2+1}+\cdots +\frac{1}{n^2+n})^n\leq (1+\frac{n}{n^2+1})^n=(1+\frac{n}{n^2+1})^{\frac{n^2+1}{n}\cdot \frac{n^2}{n^2+1}}=e,(n \to \infty )$
$\displaystyle \therefore \lim_{n \to \infty }(1+\frac{1}{n^2+1}+\cdots +\frac{1}{n^2+n})^n=e.$
(3)、
$=0.$
(4)、
$\begin{align*}\lim_{(x,y)\to(0,0)}\frac{\sin(x^3+y^3)}{x^2+y^2}&=\lim_{(x,y)\to(0,0)}\frac{x^3+y^3}{x^2+y^2}\\\\&=\lim_{(x,y)\to(0,0)}\frac{(x+y)(x^2-xy+y^2)}{x^2+y^2}\\\\&=\lim_{(x,y)\to(0,0)}(x+y)\\\\&=0.\end{align*}$
(5)、
$\displaystyle \lim_{x\to 0}\frac{1-\cos x}{x\ln(1+\sin x)}=\lim_{x\to 0}\frac{\frac{1}{2}x^2}{x\sin x}=\lim_{x\to 0}\frac{\frac{1}{2}x^2}{x^2}=\frac{1}{2}.$