上海财经大学2020年数学分析考研试题
解:
1、由积分区间的对称性和积分函数的奇偶性知
$\displaystyle \oint_SxdS=0.$
2、由积分轮换对称性,
$\displaystyle \oint_Sx^2dS=\frac{1}{3}\oint_S(x^2+y^2+z^2)dS=\frac{1}{3}\oint_SdS=\frac{4}{3}\pi.$
3、在xoy平面上的投影区域:
$\displaystyle D_{xy}:x^2+y^2+(x+y)^2=1,$
设
$\displaystyle x=u+v,y=u-v,$
作变换
$\displaystyle D'_{uv}:u^2+v^2=\frac{1}{6},J=2.$
$\displaystyle \oint_Sy^4dS=\oint_{S'}(u-v)^4dS'=\frac{1}{3}\oint_SdS$
而
$\displaystyle dS=\sqrt{1+\frac{x^2}{1-x^2-y^2}+\frac{y^2}{1-x^2-y^2}}=\frac{1}{\sqrt{1-x^2-y^2}}dxdy,$
$\displaystyle dS'=\frac{2}{\sqrt{1-(u+v)^2-(u-v)^2}}dudv=2dudv,$
计算,
$ \begin{align*}\oint_Sy^4dS&=\oint_{S'}(u-v)^4d{S'}\\\\&=2\iint_{D'_uv}(u-v)^4 dudv\\\\&=2\int_{0}^{2\pi}d\theta \int_{0}^{1}(r\cos\theta -r\sin\theta )^4rdr\\\\&=\frac{1}{108}\int_{0}^{2\pi}(\cos\theta -\sin \theta )^4d\theta\\\\& =\frac{1}{108}\int_{0}^{2\pi}(1-2\sin2\theta +\sin^22\theta )d\theta\\\\& =\frac{1}{108}(3\pi+2).\end{align*} $