解:
$\displaystyle \forall x> \pi,\exists n\in \mathbb{N},s.t.n\pi\leq x\leq (n+1)\pi,$
设
$\displaystyle x=n\pi+y,0\leq y< \pi,x\to +\infty,(n \to +\infty),$
则
$\begin{align*}\lim_{x\to+\infty}\frac{1}{x}\int_{0}^{x}|\cos t|dt&=\lim_{n\to+\infty}\frac{1}{n\pi+y}\int_{0}^{n\pi+y}|\cos t|dt\\\\&=\lim_{n\to+\infty}\frac{1}{n\pi+y}(\int_{0}^{\pi}|\cos t|dt+\int_{\pi}^{2\pi}|\cos t|dt+\\\\&\cdots +\int_{(n-1)\pi}^{n\pi}|\cos t|dt+\int_{n\pi}^{n\pi+y}|\cos t|dt)\\\\&=\lim_{n\to+\infty}\frac{1}{n\pi+y}(n\int_{0}^{\pi}|\cos t|dt+\int_{n\pi}^{n\pi+y}|\cos t|dt)\\\\&=\lim_{n\to+\infty}\frac{n}{n\pi+y}(\int_{0}^{\pi}|\cos t|dt+\frac{1}{n}\int_{n\pi}^{n\pi+y}|\cos t|dt)\\\\&=\lim_{n\to+\infty}\frac{n}{n\pi+y}(\int_{0}^{\pi}|\cos t|dt+\frac{1}{n}\int_{0}^{y}|\cos t|dt)\\\\&=\lim_{n\to+\infty}\frac{n}{n\pi+y}\int_{0}^{\pi}|\cos t|dt+\lim_{n\to+\infty}\frac{1}{n\pi+y}\int_{0}^{y}|\cos t|dt\\\\&=\frac{1}{\pi}\int_{0}^{\pi}|\cos t|dt\\\\&=\frac{1}{\pi}(\int_{0}^{\pi/2}\cos tdt+\int_{\pi/2}^{\pi}-\cos tdt)\\\\&=\frac{2}{\pi}.\end{align*}$


雷达卡


京公网安备 11010802022788号







