2020年各高校曲线积分试题
证明:
令
$\displaystyle z=f(x,y),$
则
$\displaystyle dz=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy,$
运用格林公式,得
$\begin{align*} \oint_LR(x,y,z)dz&=\oint R\frac{\partial f}{\partial x}dx+R\frac{\partial f}{\partial y}dy\\\\&=\iint_{\partial D} (\frac{\partial R}{\partial x}\frac{\partial f}{\partial y}-\frac{\partial R}{\partial y}\frac{\partial f}{\partial x})dxdy,\end{align*}$
由$z=f(x,y),$,可知其方向数和方向余弦分别为
$\displaystyle (-z_x,-z_y,1),(\cos\alpha ,\cos\beta ,\cos\gamma ),$
同时可得
$\displaystyle \frac{\partial z}{\partial x}=\frac{\partial f}{\partial x}=-\frac{\cos\alpha }{\cos \gamma },\frac{\partial z}{\partial y}=\frac{\partial f}{\partial y}=-\frac{\cos\beta }{\cos \gamma },$
$\displaystyle dydz=\cos\alpha dS,dzdx=\cos \beta dS,dxdy=\cos \gamma dS,$
因此
$\begin{align*}\oint_LR(x,y,z)dz&=\iint_{\Sigma} (\frac{\partial R}{\partial x}\frac{\partial f}{\partial y}-\frac{\partial R}{\partial y}\frac{\partial f}{\partial x})dxdy\\\\&=\iint_{\Sigma} (-\frac{\partial R}{\partial x}\cos\beta +\frac{\partial R}{\partial y}\cos\alpha )\frac{dxdy}{\cos\gamma }\\\\&=\iint_{\Sigma} (-\frac{\partial R}{\partial x}\cos\beta +\frac{\partial R}{\partial y}\cos\alpha )dS\\\\&=\iint_{\Sigma}\frac{\partial R}{\partial y}dydz-\frac{\partial R}{\partial x}dydx.\end{align*}$