证明
令:
$\displaystyle F(x)= (\int_{0}^{x}f(t)dt)^2,G(x)= \int_{0}^{x}f^3(t)dt,$
利用柯西中值定理(2次)
$\begin{align*}\frac{(\int_{0}^{x}f(t)dt)^2}{\int_{0}^{x}f^3(t)dt}&=\frac{F(1)-F(0)}{G(1)-G(0)}\\\\&=\frac{(\int_{0}^{1}f(t)dt)^2}{\int_{0}^{1}f^3(t)dt}\\\\&=\frac{2f(\xi)\int_{0}^{\xi}f(t)dt}{f^3(\xi)} \\\\&\frac{2\int_{0}^{\xi}f(t)dt-\int_{0}^{0}f(t)dt}{f^2(\xi)-f^2(0)}\\\\&=\frac{2f(\eta)}{2f(\eta)f'(\eta)}\\\\&=\frac{1}{f'(\eta)}> 1.\end{align*}$
由此得
$\displaystyle (\int_{0}^{x}f(t)dt)^2> \int_{0}^{x}f^3(t)dt,$
令$x=1$,即得命题结论。


雷达卡
京公网安备 11010802022788号







