你好,欢迎来到经管之家 [登录] [注册]

设为首页 | 经管之家首页 | 收藏本站

军民水库除险加固设计中若干问题浅析和体会(1)_工程力学专业毕业论文

发布时间:2014-12-06 来源:人大经济论坛
军民水库除险加固设计中若干问题浅析和体会(1)_工程力学专业毕业论文 摘要:本文结合江西省军民水库的除险加固设计,就病险土石坝除险加固设计的防洪标准确定、大坝基础资料分析和整理、除险加固方案选择以及大坝监测系统完善等问题进行探讨,并提出建设性的意见。 关键词:军民水库除险加固设计若干问题 军民水库位于江西省波阳县境内的鄱阳湖水系潼津河北支流上,控制流域面积131KM2,水库正常蓄水位82.5M,相应库容1.42х108M3,复核后校核洪水位85.65M(P=0.05%),总库容1.8х108M3,大坝原设计为心墙土坝,经现场取样试验表明为类似均质坝,坝顶高程89.6M,最大坝高39.0M,是一座以灌溉为主、结合防洪、发电、养殖、航运等综合利用的大(二)型水利工程。工程于1971年动工兴建,1972年建成并投入使用。水库属于边勘测、边设计、边施工的“三边”工程,且工程施工依靠大规模的群众运动完成,使得施工质量难以控制以及坝基处理不到位,给工程留下隐患。1992—1995年,虽对坝身采用冲抓套井粘土防渗心墙加固,但防渗效果不明显。2000年7月,大坝安全类别鉴定为三类,应进行除险加固。 1合理确定防洪标准 军民水库大坝属于2级建筑物,在建设初期采用的校核洪水标准为1000年一遇,水位为85.2M,70年代后期,又采用最大洪水标准,水位达88.25M,两者水位相差3.05M。显然,1000年一遇不能满足《防洪标准》的要求;若继续采用最大洪水标准,又高于《防洪标准》的要求,且大坝需加高或扩大溢洪道泄洪断面,既增加工程投资,又不能增加有效库容。由于本水库库容系数达0.76,属多年调节水库,结合工程建筑物级别,根据工程运行情况,参考已建大中型土石坝工程防洪标准的取值,按照有关规定,确定校核洪水标准为规定取值的下限,即2000年一遇。 2大坝原型观测资料分析和整理 军民水库渗流观测设施很不完善,仅有渗流压力观测,无渗流量观测及水雨情观测。由于1974年埋设的测压管在1976年大坝加固时遭堵塞废弃,其观测资料无从查找。现有测压管为1989年埋设,1990年5月开始观测,共31根,其中坝身测压管14根,坝基测压管9根,设在0+137.3、0+223.3、0+309.3断面,其中坝身测压管每断面各4根,另外在0+70.3、0+370.7坝轴线位置各1根,坝基测压管每断面各3根;绕坝测压管8根,其中左岸4根,右岸4根,其中31#管已埋入土中。测压管平面布置图见图1。 测压管由人工进行观测,手段落后、精度低,观测资料未得到整编分析,因此大坝除险加固前的防渗体系的防渗效果如何以及大坝渗流性态不明。 在除险加固设计中,根据测压管水位观测资料,结合每一根测压管绘制了水位历时过程线、位势过程线和坝体、坝肩等水位线以及坝基渗流压力等势线、大坝剖面浸润线等图,进行分析和整理。 2.1水位过程线分析 在测压管水位过程线中,其中有些明显异常高于正常的测值,如管水位明显高于库水位等,分析为人为因素或降雨影响引起,在排除滞后效应的影响后,予以剔除。 2.1.1坝身测压管:坝左端0+70.3断面13#管的水位与库水位无相关性。左坝段0+137.3断面,1#、2#、3#、4#测压管中,2#、3#、4#管水位变化很小,与库水位的变化相关性不明显,说明灵敏度较差,资料不可靠;1#管与下游水位的相关性较明显。坝中段0+223.3断面的5#、6#、7#、8#测压管中,6#管水位与库水位变化基本一致,但变幅较小,与其靠近下游有关;7#管水位变化很小,与库水位无关,且变幅小于其下游的6#管,说明灵敏度差;8#管在高水位时与库水位明显相关和有滞后效应;5#管水位明显与下游水位相关。右坝段0+309.3断面的9#、10#、11#、12#测压管中,9#、10#、11#与库水位相关性较好,12#管主要在高水位时与库水位相关性较好。12#管的滞后效应十分明显,但其下游的10#、11#的管水位基本相同,滞后效应不明显,是不正常的,反映了坝体填筑质量差,透水性强,在局部(如在10#、11#管之间)可能存在强透水带。坝右端的14#管水位与库水位变化基本一致,相关性非常密切,滞后效应不明显,反映右坝段透水性强。 在整个坝身测压管中,当水库维持在较高水位不变的运行条件下,5#、9#、14#管的水位均随时间显示出负增长,说明原来的防渗体系发挥了一定的作用。 2.1.2坝基测压管:左坝段0+137.3断面15#、16#、17#管的管水位与下游水位接近且相关性明显,与库水位基本不相关,反映该断面附近上游的粘土截水齿墙或原心墙的截渗效果好。坝中段0+223.3断面的18#、19#、20#管中,19#管与下游水位相关性好,反映该断面附近上游的粘土截水齿墙或原心墙的截渗效果好。18#、20#管水位与库水位不相关,18#管水位甚至超过了上游侧的19#管水位,估计是粘土套井施工时淤塞了该管,其观测资料剔除。右坝段断面位于原施工导流渠附近,21#、22#、23#管的灵敏度均较好,与库水位的相关性较明显,管水位明显高于其他两断面的坝基测压管水位。 2.1.3绕坝测压管:绕坝测压管特别在高水位时,表现出与库水位很强的相关性,滞后效应不明显,说明灵敏性较好。绕坝测压管水位明显高于纵向相同位置的坝身测压管,越靠近下游越明显;坝右端的28#、29#、30#管水位均呈增长变化,靠近上游侧的管水位基本不变,而渗流出口段的水位不断上升;对坝体和坝肩稳定不利。 2.2位势变化分析 绘制年平均位势和最高位势过程线。对靠近下游侧的测压管以及没有或轻微淤塞的测压管,平均位势与最高位势基本相近,变化趋势也一致,采用平均位势分析;淤塞严重和透水管下端灵敏度变差的测压管,宜采用最高位势进行分析。 2.2.1坝身测压管:左坝段0+70.3断面的3#管、0+137.3断面的1#、2#、3#、4#管和坝中段0+223.3断面的5#、6#、7#、8#管,在1995年前,位势基本保持稳定,说明坝体渗流性态正常;1995-1997年,位势有所下降,靠近上游侧降幅越大,向下游逐渐递减,估计是1992-1995年加固的粘土套井防渗墙发挥了一定作用;自1997年以后各管位势回升接近到原来水平,反映防渗墙逐渐失效,正好印证了原粘土料质量差及施工质量不佳。出口段的5#、6#管位势近年来明显上升,且5#管的升幅高于6#管,表明下游排水棱体可能因淤堵,排水功能下降。右坝段0+309.3断面的9#、10#、11#、12#管和0+370.7断面的14#管,1995年以前,除下游靠近渗流出口的9#管位势基本保持稳定外,其余管位势呈较明显上升变化,不能排除右坝体的渗流状态有所恶化、发生渗透流失的可能性;与观测到的0+360左右的棱体上部高程60.0M马道内缘发现一渗漏逸出点群相符合。1995年后位势有所下降,与粘土防渗墙有关。近年所有管的位势又开始回升,说明粘土防渗墙逐渐失效,但高水位的位势仍较粘土心墙施工前略低,可能是由于右坝段施工了两排粘土套井的原因,其仍在发挥一定的防渗作用。估计随着时间推移,其防渗作用会逐渐丧失。 从整个坝体的位势分布看,坝体浸润线高,坝轴线附近的位势超过70%,反映了粘土心墙未发挥明显作用,证明了上部坝体水平向透水性强。靠近左、右坝头附近坝体内的等水位线与坝中相比,明显偏向下游,主要是受绕坝渗漏影响,说明绕坝渗流严重。右坝段比左坝段位势分布要高,反映了右坝段上部坝体的透水性和绕坝渗流比左坝段强。 2.2.2坝基测压管:左坝段0+137.3断面的测压管位势较低,无明显趋势性变化,说明粘土截水槽截渗效果好,坝基产生渗流破坏和变形可能性小。坝中段0+223.3断面的位势,在1993年前,比左断面略低且稳定;1993年后,经分析,测压管估计失效。右坝段0+309.3断面的位势均比其它两个断面的要高,坝轴线位置高达30%,下游侧高近10%,可能是原施工导流渠渗漏、放空底涵裂缝漏水和右岸绕坝渗漏等原因引起。1995、1996两年的位势有明显的降低,可能粘土心墙发挥了作用,近年坝基位势又逐渐回升,说明防渗墙质量不佳,基本失效。经位势推算,在设计或校核洪水位下,有可能产生渗流破坏和变形。 2.2.3绕坝测压管:左、右坝肩的绕坝测压管位势均较高,且呈上升变化趋势,越向下游升幅越大,反映绕坝渗流不稳定。 综合观测资料分析,坝体上部质量差,1992年施工的粘土套井心墙在选料、施工质量等方面存在缺陷,未起到预期防渗效果,坝体位势较高;推算高水位时,渗流会自下游坝坡半坝高以上逸出。可能存在施工导流渠渗漏、放空底涵裂缝漏水。右坝基有可能产生渗流破坏和变形的可能。左、右岸坝头山体内位势很高,呈上升变化趋势,绕坝渗流严重。
经管之家“学道会”小程序
  • 扫码加入“考研学习笔记群”
推荐阅读
经济学相关文章
标签云
经管之家精彩文章推荐