请选择 进入手机版 | 继续访问电脑版
楼主: snxl
2680 2

[其他] 随机插补下两线性模型中响应变量分位数差异的经验似然置信区间 [推广有奖]

贵宾

学术权威

66%

还不是VIP/贵宾

-

威望
7
论坛币
1438570 个
通用积分
35.9717
学术水平
788 点
热心指数
1038 点
信用等级
689 点
经验
238121 点
帖子
4471
精华
8
在线时间
3132 小时
注册时间
2006-10-18
最后登录
2021-11-29

三级伯乐勋章 初级热心勋章 初级学术勋章 初级信用勋章 中级热心勋章 中级学术勋章 中级信用勋章 高级热心勋章 高级学术勋章 高级信用勋章

snxl 在职认证  发表于 2011-1-7 00:21:42 |显示全部楼层

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

【原文出处】数理统计与管理

【原刊地名】京

【原刊期号】20101

【原刊页号】88~101

【分 类 号】F104

【分 类 名】统计与精算

【复印期号】201003

【英文标题】Empirical Likelihood Confidence Intervals for Quantile Differences in Response Variables of Two Linear Regression Models under Random Imputation

【标题注释】【基金项目】国家自然科学基金(10971038);广西科学基金(0728092);教育部留学回国人员科研启动资金([2004]527)。

【作 者】罗志军/王历容

【作者简介】罗志军,湖南人文科技学院数学系;

    王历容,湖南娄底技师学院(湖南 娄底 417000),广西师范大学数学科学学院(广西 桂林 541004)。

【内容提要】设两个样本数据不完全的线性模型,其中协变量的观测值不缺失,响应变量的观测值随机缺失。采用随机回归插补法对响应变量的缺失值进行补足,得到两个线性回归模型的“完全”样本数据,在一定条件下得到两响应变量分位数差异的对数经验似然比统计量的极限分布为加权 ,并利用此结果构造分位数差异的经验似然置信区间。模拟结果表明在随机插补下得到的置信区间具有较高的覆盖精度。

【摘 要 题】理论与方法

【英文摘要】Consider two linear regression models with missing data. Suppose that the covariates are not missing, but response variables are missing at random. Random regression imputation method is used to impute the missing data of response variables and obtain 'complete' data for two linear regression models. Under some conditions, it is proved that the asymptotic distributions for the empirical log-likelihood ratios of quantile differences of response variables are scaled . Empirical likelihood confidence intervals for quantile difference of response variables are then constructed based on these results. Simulations show that fractional imputation can improve the coverage accuracy of confidence intervals.

【关 键 词】线性模型/分位数/缺失数据/随机回归插补/经验似然/置信区间

    linear model/quantile/missing data/random regression imputation/empirical likelihood/confidence intervals

【正 文】



【参考文献】

    [1]Owen A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988,75:237-249.

    [2]王启华.经验似然统计推断方法发展综述[J].数学进展,2004,2:141-150.

    [3]Owen A B. Empirical likelihood for linear models[J]. The Annals of Statistics, 1991,19:1725-1747.

    [4]秦永松.部分线性模型参数的经验似然比置信域[J].应用概率统计,1999,4:363-369.

    [5]石坚.高维线性模型中的经验似然[J].系统科学与数学,2007,2:124-133.

    [6]Wang Q H, Rao J N K. Empirical likelihood for linear regression models under imputation for missing response[J]. The Canadian Journal Statistics, 2001,29:597-608.

    [7]Wang Q H, Rao J N K. Empirical likelihood-based confidence in linear error-in-covariables models with validation data[J]. Biometrica, 2002a, 89:345-358.

    [8]Wang Q H, Linton O, H trdle W. Semiparametric regression analysis with missing response at random[J]. Journal of the American Statistical Association, 2004,99:334-345.

    [9]Yates F. The analysis of replicated experiments when the field results are incomplete[J]. The Empire Journal of Experimental Agriculture, 1933,1:129-142.

    [10]Little R J A, Rubin D B. Statistical analysis with missing data[M]. New York: Wiley, 2002.

    [11]Qin Y, Rao J N K, Ren Q. Confidence intervals for marginal parameters under fractional linear regression imputation for missing data[J]. Journal of Multivariate Analysis, 2008,99:1232-1259.

    [12]钱永江.缺失数据下分位数差异和均值的经验似然统计推断[D].桂林:广西师范大学,2007.

    [13]Qin Y, Zhang S. Empirical likelihood confidence intervals for differences between two datasets with missing data[J]. Pattern Recognition Letters, 2008,29(6):803-812.

    [14]秦永松,赵林城.两总体分位数差异的经验似然比置信区间[J].数学年刊,1997,18A:687-694.

    [15]Chen J, Rao J N K. Asymptotic normality under two-phase sampling designs[J]. Statistica Sinica, 2007,17:1047-1064.

    [16]Parzen E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962,3:1065-1076.

    [17]Serfiing R J. Approximation theorems of mathematical statistics[M]. New York: John Wiley & Sons, 1980.

    [18]Randles R H. On the asymptotic normality of statistics with estimated parameters[J]. The Annals of Statistics, 1982,10:462-474.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:线性模型 置信区间 分位数 Mathematical Experimental 教育部 置信区间 自然科学 科技学院 Random

jesserock 发表于 2011-1-19 01:39:36 |显示全部楼层
`````````````````````````````          什么意思

使用道具

m8843620 发表于 2011-5-30 10:01:31 |显示全部楼层
谢谢楼主的分享

使用道具

您需要登录后才可以回帖 登录 | 我要注册

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2021-12-4 13:51