摘要翻译:
我们提出,自组装构件的遗传编码极大地促进了复杂系统的进化,并为归纳推广提供了一个有效的平台,即从有限的测试示例集归纳推导出潜在无限个实例的问题的解。我们通过对几个问题的可扩展电路的演化来在模拟中举例说明这一点。数字乘法是其中之一,近年来得到了广泛的研究,到目前为止,只实现了特定的小乘法器的进化设计。利用自组装技术可以全面地解决这一问题和其他问题,这一事实揭示了自组装在生物学中的进化作用,并与纳米和生物纳米技术中复杂系统的设计有关。
---
英文标题:
《Evolving inductive generalization via genetic self-assembly》
---
作者:
Rudolf M. Fuechslin, Thomas Maeke, Uwe Tangen, John S. McCaskill
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Populations and Evolution 种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
We propose that genetic encoding of self-assembling components greatly enhances the evolution of complex systems and provides an efficient platform for inductive generalization, i.e. the inductive derivation of a solution to a problem with a potentially infinite number of instances from a limited set of test examples. We exemplify this in simulations by evolving scalable circuitry for several problems. One of them, digital multiplication, has been intensively studied in recent years, where hitherto the evolutionary design of only specific small multipliers was achieved. The fact that this and other problems can be solved in full generality employing self-assembly sheds light on the evolutionary role of self-assembly in biology and is of relevance for the design of complex systems in nano- and bionanotechnology.
---
PDF链接:
https://arxiv.org/pdf/0705.1460