摘要翻译:
在本文中,我们扩展了先前关于跳扩散风险敏感资产管理问题[SIAM J.Fin.Math.(2011)22-54]的工作,允许因子过程和资产价格的跳变,以及随机波动性和投资约束。在这种情况下,HJB方程是一个偏积分微分方程(PIDE)。通过将粘性解与符号变换、策略改进和抛物型偏微分方程的经典结果相结合,我们证明了HJB型偏微分方程存在唯一光滑解。一个验证定理给出了这个问题的解决方法。
---
英文标题:
《Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor
Model》
---
作者:
Mark Davis and Sebastien Lleo
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Computer Science 计算机科学
二级分类:Systems and Control 系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
In this article we extend earlier work on the jump-diffusion risk-sensitive asset management problem [SIAM J. Fin. Math. (2011) 22-54] by allowing jumps in both the factor process and the asset prices, as well as stochastic volatility and investment constraints. In this case, the HJB equation is a partial integro-differential equation (PIDE). By combining viscosity solutions with a change of notation, a policy improvement argument and classical results on parabolic PDEs we prove that the HJB PIDE admits a unique smooth solution. A verification theorem concludes the resolution of this problem.
---
PDF链接:
https://arxiv.org/pdf/1102.5126