楼主: mingdashike22
210 0

[量化金融] 非高斯型股票日内收益率模型 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
71.9047
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24893 点
帖子
4117
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-8 08:07:25 来自手机 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
众所周知,股票价格表现出非高斯动力学,人们对理解这种行为的起源很感兴趣。在这里,我们提出了一个模型来解释日内股票价格波动(称为日内收益)分布的形状和规模,并使用伦敦证券交易所交易的几只股票的大型数据库来验证该模型。我们提供的证据表明,这些股票的收益分布是非高斯的,形状相似,并且在日内时间尺度上分布是稳定的。我们通过假设收益的波动性在日内是恒定的,但在更长的时间内变化,使得它的反比平方服从伽玛分布来解释这些结果。这将生成按日内时间尺度分布的学生返回。预测结果与我们研究的所有股票以及所有地区的收益分布数据都显示出良好的一致性。
---
英文标题:
《Model for Non-Gaussian Intraday Stock Returns》
---
作者:
Austin Gerig, Javier Vicente, Miguel A. Fuentes
---
最新提交年份:
2009
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance        数量金融学
二级分类:Risk Management        风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--

---
英文摘要:
  Stock prices are known to exhibit non-Gaussian dynamics, and there is much interest in understanding the origin of this behavior. Here, we present a model that explains the shape and scaling of the distribution of intraday stock price fluctuations (called intraday returns) and verify the model using a large database for several stocks traded on the London Stock Exchange. We provide evidence that the return distribution for these stocks is non-Gaussian and similar in shape, and that the distribution appears stable over intraday time scales. We explain these results by assuming the volatility of returns is constant intraday, but varies over longer periods such that its inverse square follows a gamma distribution. This produces returns that are Student distributed for intraday time scales. The predicted results show excellent agreement with the data for all stocks in our study and over all regions of the return distribution.
---
PDF链接:
https://arxiv.org/pdf/0906.3841
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:收益率 distribution Quantitative Applications Econophysics return 分布 显示 收益 股票

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-10 02:03