摘要翻译:
本文将包含K个解释变量和T个观测值的时变参数(TVP)回归模型写成一个包含KT个解释变量的常系数回归模型。与现有文献中假设系数随随机游动演化的观点不同,本文提出了一种基于TVPs的分层混合模型。所得到的模型很好地模拟了一个随机系数规范,该规范将TVP分成几个制度。这些柔性混合物允许TVPs具有少量、适度或大量的结构断裂。我们发展了基于KT回归的奇异值分解的计算有效的贝叶斯计量经济学方法。在人工数据中,我们发现我们的方法在计算时间方面比标准方法准确得多。在一个使用大量预测因子进行通货膨胀预测的经验练习中,我们发现我们的模型比其他方法更能预测,并且记录了不同的参数变化模式,而不是假设参数随机游动演化的方法。
---
英文标题:
《Fast and Flexible Bayesian Inference in Time-varying Parameter
Regression Models》
---
作者:
Niko Hauzenberger, Florian Huber, Gary Koop, Luca Onorante
---
最新提交年份:
2021
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
---
英文摘要:
In this paper, we write the time-varying parameter (TVP) regression model involving K explanatory variables and T observations as a constant coefficient regression model with KT explanatory variables. In contrast with much of the existing literature which assumes coefficients to evolve according to a random walk, a hierarchical mixture model on the TVPs is introduced. The resulting model closely mimics a random coefficients specification which groups the TVPs into several regimes. These flexible mixtures allow for TVPs that feature a small, moderate or large number of structural breaks. We develop computationally efficient Bayesian econometric methods based on the singular value decomposition of the KT regressors. In artificial data, we find our methods to be accurate and much faster than standard approaches in terms of computation time. In an empirical exercise involving inflation forecasting using a large number of predictors, we find our models to forecast better than alternative approaches and document different patterns of parameter change than are found with approaches which assume random walk evolution of parameters.
---
PDF链接:
https://arxiv.org/pdf/1910.10779