楼主: 能者818
535 0

[经济学] 基于序列Monte的GARCH型模型的有效贝叶斯估计 卡罗 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
37.8378
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-12 12:36:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
利用序贯蒙特卡罗(SMC)的优点,提出了GARCH(广义自回归条件异方差)模型的参数估计和模型选择方法。它提供了一种相对于经典推论的量化估计不确定性的替代方法。即使在较长的时间序列中,模型参数的后验分布也是非正态分布,这突出了贝叶斯方法和有效的后验抽样方法的必要性。对于长时间序列数据,本文还提出了构造SMC分布序列和保留一次交叉验证的有效方法。最后,针对复杂的GARCH型模型--坏环境-好环境模型,给出了一个无偏的似然估计,该估计允许以前文献中没有的精确贝叶斯推断。
---
英文标题:
《Efficient Bayesian estimation for GARCH-type models via Sequential Monte
  Carlo》
---
作者:
Dan Li and Adam Clements and Christopher Drovandi
---
最新提交年份:
2020
---
分类信息:

一级分类:Statistics        统计学
二级分类:Applications        应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics        统计学
二级分类:Computation        计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--

---
英文摘要:
  The advantages of sequential Monte Carlo (SMC) are exploited to develop parameter estimation and model selection methods for GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) style models. It provides an alternative method for quantifying estimation uncertainty relative to classical inference. Even with long time series, it is demonstrated that the posterior distribution of model parameters are non-normal, highlighting the need for a Bayesian approach and an efficient posterior sampling method. Efficient approaches for both constructing the sequence of distributions in SMC, and leave-one-out cross-validation, for long time series data are also proposed. Finally, an unbiased estimator of the likelihood is developed for the Bad Environment-Good Environment model, a complex GARCH-type model, which permits exact Bayesian inference not previously available in the literature.
---
PDF链接:
https://arxiv.org/pdf/1906.03828
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:GARCH 贝叶斯估计 ARCH mont RCH 方差 model 不确定性 type method

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-12 13:15