楼主: mingdashike22
363 0

[经济学] 居家命令对新冠肺炎病例和死亡的影响 美国 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8816
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-19 20:40:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
政府发布“呆在家里”的命令来减少传染病的传播,但这种命令的有效性程度尚不确定。在美国,在2019年冠状病毒疾病(新冠肺炎)疫情期间,这些命令没有在国家一级进行协调,这为使用空间和时间变化来更准确地衡量政策效果创造了机会。在这里,我们将居家订单的时间数据与美国县级每日确诊的新冠肺炎病例和死亡人数相结合。我们使用差异中的差异设计来估计居家订单的影响,该设计考虑了卫生系统和人口统计等因素中未测量的局部变化,以及国家缓解行动和获得测试等因素中未测量的时间变化。与没有实施居家订单的县相比,结果显示,订单与一周后每周病例减少30.2%(11.0至45.2)有关,与两周后每周病例减少40.0%(23.4至53.0)有关,与三周后每周病例减少48.6%(31.1至61.7)有关。家庭订单还与三周后每周死亡人数减少59.8%(18.3至80.2)有关。这些结果表明,在实施居家命令的地方,在头三周内,确诊病例减少了39万例(17万至68万例),死亡病例减少了41,000例(27,000至59,000例)。
---
英文标题:
《The effect of stay-at-home orders on COVID-19 cases and fatalities in
  the United States》
---
作者:
James H. Fowler, Seth J. Hill, Remy Levin, Nick Obradovich
---
最新提交年份:
2020
---
分类信息:

一级分类:Statistics        统计学
二级分类:Applications        应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Economics        经济学
二级分类:General Economics        一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance        数量金融学
二级分类:Economics        经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--

---
英文摘要:
  Governments issue "stay at home" orders to reduce the spread of contagious diseases, but the magnitude of such orders' effectiveness is uncertain. In the United States these orders were not coordinated at the national level during the coronavirus disease 2019 (COVID-19) pandemic, which creates an opportunity to use spatial and temporal variation to measure the policies' effect with greater accuracy. Here, we combine data on the timing of stay-at-home orders with daily confirmed COVID-19 cases and fatalities at the county level in the United States. We estimate the effect of stay-at-home orders using a difference-in-differences design that accounts for unmeasured local variation in factors like health systems and demographics and for unmeasured temporal variation in factors like national mitigation actions and access to tests. Compared to counties that did not implement stay-at-home orders, the results show that the orders are associated with a 30.2 percent (11.0 to 45.2) reduction in weekly cases after one week, a 40.0 percent (23.4 to 53.0) reduction after two weeks, and a 48.6 percent (31.1 to 61.7) reduction after three weeks. Stay-at-home orders are also associated with a 59.8 percent (18.3 to 80.2) reduction in weekly fatalities after three weeks. These results suggest that stay-at-home orders reduced confirmed cases by 390,000 (170,000 to 680,000) and fatalities by 41,000 (27,000 to 59,000) within the first three weeks in localities where they were implemented.
---
PDF链接:
https://arxiv.org/pdf/2004.06098
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Applications Demographics Contribution epidemiology Quantitative 肺炎 因素 000 reduction 效果

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-25 13:07