摘要翻译:
本文给出了一个适用于给定过滤的随机过程空间上凸积分泛函极小化问题的一般对偶框架。该框架统一了运筹学和数学金融学中许多著名的对偶框架。这一统一允许将这两个领域的一些有用技术扩展到更广泛的问题类别。特别是,将凸分析中的某些有限维技术与数学金融学中的测度理论技术相结合,我们能够在传统拓扑论证失败的某些情况下弥合对偶鸿沟。
---
英文标题:
《Convex duality in stochastic programming and mathematical finance》
---
作者:
Teemu Pennanen
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
英文摘要:
This paper proposes a general duality framework for the problem of minimizing a convex integral functional over a space of stochastic processes adapted to a given filtration. The framework unifies many well-known duality frameworks from operations research and mathematical finance. The unification allows the extension of some useful techniques from these two fields to a much wider class of problems. In particular, combining certain finite-dimensional techniques from convex analysis with measure theoretic techniques from mathematical finance, we are able to close the duality gap in some situations where traditional topological arguments fail.
---
PDF链接:
https://arxiv.org/pdf/1006.4083


雷达卡



京公网安备 11010802022788号







