摘要翻译:
研究齐次空间的开等变射影嵌入,使得开轨道的补不包含因子。讨论了此类嵌入的存在性判据,证明了给定齐次空间中嵌入同构类的有限性。任何一个小边界嵌入都是通过规范嵌入空间上的平凡线丛的线性化而得到的一个Git商。广义Cox构造和聚束环理论允许我们用组合术语描述小边界嵌入的基本几何性质。
---
英文标题:
《Projective embeddings of homogeneous spaces with small boundary》
---
作者:
Ivan V. Arzhantsev
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
We study open equivariant projective embeddings of homogeneous spaces such that the complement of the open orbit does not contain divisors. Criterions of existence of such an embedding are considered and finiteness of isomorphism classes of embeddings for a given homogeneous space is proved. Any embedding with small boundary is realized as a GIT-quotient associated with a linearization of the trivial line bundle on the space of the canonical embedding. The generalized Cox's construction and the theory of bunched rings allow us to describe basic geometric properties of embeddings with small boundary in combinatorial terms.
---
PDF链接:
https://arxiv.org/pdf/0801.1967


雷达卡



京公网安备 11010802022788号







