英文标题:
《Estimating Operational Risk Capital with Greater Accuracy, Precision,
and Robustness》
---
作者:
J.D. Opdyke
---
最新提交年份:
2014
---
英文摘要:
The largest US banks are required by regulatory mandate to estimate the operational risk capital they must hold using an Advanced Measurement Approach (AMA) as defined by the Basel II/III Accords. Most use the Loss Distribution Approach (LDA) which defines the aggregate loss distribution as the convolution of a frequency and a severity distribution representing the number and magnitude of losses, respectively. Estimated capital is a Value-at-Risk (99.9th percentile) estimate of this annual loss distribution. In practice, the severity distribution drives the capital estimate, which is essentially a very high quantile of the estimated severity distribution. Unfortunately, because the relevant severities are heavy-tailed AND the quantiles being estimated are so high, VaR always appears to be a convex function of the severity parameters, causing all widely-used estimators to generate biased capital estimates (apparently) due to Jensen\'s Inequality. The observed capital inflation is sometimes enormous, even at the unit-of-measure (UoM) level (even billions USD). Herein I present an estimator of capital that essentially eliminates this upward bias. The Reduced-bias Capital Estimator (RCE) is more consistent with the regulatory intent of the LDA framework than implementations that fail to mitigate this bias. RCE also notably increases the precision of the capital estimate and consistently increases its robustness to violations of the i.i.d. data presumption (which are endemic to operational risk loss event data). So with greater capital accuracy, precision, and robustness, RCE lowers capital requirements at both the UoM and enterprise levels, increases capital stability from quarter to quarter, ceteris paribus, and does both while more accurately and precisely reflecting regulatory intent. RCE is straightforward to implement using any major statistical software package.
---
中文摘要:
监管机构要求美国最大的银行使用《巴塞尔协议II/III》定义的高级计量方法(AMA)估算其必须持有的操作风险资本。大多数使用损失分布方法(LDA),该方法将总损失分布定义为频率和严重程度分布的卷积,分别代表损失的数量和大小。估计资本是对该年度损失分布的风险价值(99.9%)估计。在实践中,严重性分布驱动资本估算,资本估算本质上是估算严重性分布的一个非常高的分位数。不幸的是,由于相关的严重性是重尾的,并且被估计的分位数非常高,VaR似乎总是严重性参数的凸函数,这导致所有广泛使用的估计量由于Jensen不等式而产生有偏的资本估计(显然)。观察到的资本膨胀有时是巨大的,即使是在计量单位(UoM)水平(甚至数十亿美元)。在此,我提出了一个资本估值器,基本上消除了这种向上的偏差。减少偏差资本估计器(RCE)比未能缓解这种偏差的实施更符合LDA框架的监管意图。RCE还显著提高了资本估算的精度,并持续增强了其对违反i.i.d.数据假设(这是运营风险损失事件数据特有的)的稳健性。因此,RCE以更高的资本准确性、精确度和稳健性,降低了计量单位和企业层面的资本要求,在同等条件下,提高了每个季度的资本稳定性,同时更准确、准确地反映了监管意图。RCE可以直接使用任何主要的统计软件包实现。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







