|
对于每个y∈ (yl,yu),我们考虑线性二阶抛物型PDEsewt(t,s,y)+σ(t,s)sewss(t,s,y)+eg(t,s,y)=0,(t,s)∈ (0,T)×(K-1,K),ew(T,s,y)=0,s∈ (K)-1,K),ew(t,s,y)=0,t∈ (0,T),s∈ {K-1,K},(3.2)和bwt(t,s,y)+σ(t,s)sbwss(t,s,y)+bg(t,s,y)=0,(t,s)∈ (0,T)×(K-1,K),bw(T,s,y)=0,s∈ (K)-1,K),bw(t,s,y)=0,t∈ (0,T),s∈ {K-1,K},(3.3)其中源项,例如,bg:D→ R由eg(t,s,y)给出:=\'\'σ(t,s)s\'\'Vss(t,s)2f(t,s,y;’σ(t,s)),(3.4)bg(t,s,y):=eσ(t,s,y)f(3)(t,s,y;’σ(t,s))-eσ(t,s,y)s'Vss(t,s)+eσ(t,s,y)'σ(t,s)s(R)Vss(t,s)ewy(t,s,y)- ewss(t、s、y)-U(y)U(y)(R)σ(t,s)seθ(t,s,y)- eσ(t,s,y)f(t,s,y;’σ(t,s))ew(t,s,y),(3.5)带eθ(t,s,y):=ews(t,s,y)+U(y)U(y)ewsy(t,s,y),(3.6)eσ(t,s,y):=?σ(t,s)s?Vss(t,s)f(t,s,y;?σ(t,s))。(3.7)我们在以下假设下证明了我们的主要结果。假设3.2。(i) PDE:有ew,bw∈ C1,2,2(D)∩ C(D)使得对于每个y∈ (yl,yu)、ew(·,·,y)和BW(·,·,y)是偏微分方程(3.2)–(3.3)和| wt |、| ws |、| wy |、| wss |、| wsy |、| wy |的经典解≤ D上的K,w∈ {ew,bw}。(3.8)(ii)参考局部波动率函数:(R)σ:[0,T]×[K-1,K]→ [0,K]是Borel可测的,存在ε>0使得ε≤ \'σ(t,s)≤ K- εon[0,T]×(K-1,K)和‘∑(t,K)=‘∑(t,K-1) =0表示t∈ [0,T]。(3.9)这里,我们假设所有相关的偏导数都存在;假设3.2给出了精确条件。(iii)参考值:(R)V:[0,T]×[K-1,K]→ R是Borel可测量的,(R)V(t,·)∈ C((K-1,K))∩C([K-1,K]),适用于所有t∈ (0,T),和s?Vss(t,s)≤ K表示(t,s)∈ (0,T)×(K-1,K)。(3.10)(iv)惩罚函数:f为Cin,偏导数f(k):=Kkf,k=2,3,4,满足yk≤ f(t,s,y;)≤ K、 |f(3)(t,s,y;)|,|f(4)(t,s,y;)|≤ D×[0,K]上的K。
|