《Dynamic portfolio strategy using clustering approach》
---
作者:
Fei Ren, Ya-Nan Lu, Sai-Ping Li, Xiong-Fei Jiang, Li-Xin Zhong, and
Tian Qiu
---
最新提交年份:
2016
---
英文摘要:
The problem of portfolio optimization is one of the most important issues in asset management. This paper proposes a new dynamic portfolio strategy based on the time-varying structures of MST networks in Chinese stock markets, where the market condition is further considered when using the optimal portfolios for investment. A portfolio strategy comprises two stages: selecting the portfolios by choosing central and peripheral stocks in the selection horizon using five topological parameters, i.e., degree, betweenness centrality, distance on degree criterion, distance on correlation criterion and distance on distance criterion, then using the portfolios for investment in the investment horizon. The optimal portfolio is chosen by comparing central and peripheral portfolios under different combinations of market conditions in the selection and investment horizons. Market conditions in our paper are identified by the ratios of the number of trading days with rising index or the sum of the amplitudes of the trading days with rising index to the total number of trading days. We find that central portfolios outperform peripheral portfolios when the market is under a drawup condition, or when the market is stable or drawup in the selection horizon and is under a stable condition in the investment horizon. We also find that the peripheral portfolios gain more than central portfolios when the market is stable in the selection horizon and is drawdown in the investment horizon. Empirical tests are carried out based on the optimal portfolio strategy. Among all the possible optimal portfolio strategy based on different parameters to select portfolios and different criteria to identify market conditions, $65\\%$ of our optimal portfolio strategies outperform the random strategy for the Shanghai A-Share market and the proportion is $70\\%$ for the Shenzhen A-Share market.
---
中文摘要:
投资组合优化问题是资产管理中最重要的问题之一。本文基于中国股市MST网络的时变结构,提出了一种新的动态投资组合策略,在使用最优投资组合进行投资时,进一步考虑了市场条件。投资组合策略包括两个阶段:通过使用五个拓扑参数,即度、介数中心性、度上距离标准、相关性上距离标准和距离上距离标准,在选择期内选择中心和外围股票来选择投资组合,然后在投资期内使用投资组合进行投资。在选择和投资范围内,通过比较不同市场条件组合下的中央和外围投资组合来选择最佳投资组合。本文通过指数上涨的交易日数或指数上涨的交易日幅度与总交易日数之和的比率来确定市场状况。我们发现,当市场处于提款状态,或者当市场在选择期内稳定或提款,并且在投资期内处于稳定状态时,中央投资组合的表现优于外围投资组合。我们还发现,当市场在选择期内稳定,在投资期内下降时,外围投资组合的收益大于中心投资组合。基于最优投资组合策略进行了实证检验。在基于不同参数选择投资组合和不同标准识别市场条件的所有可能的最优投资组合策略中,我们的最优投资组合策略中有65\\%的表现优于上海A股市场的随机策略,深圳A股市场的比例为70\\%。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->
Dynamic_portfolio_strategy_using_clustering_approach.pdf
(717.83 KB)


雷达卡



京公网安备 11010802022788号







