《Semiparametric GARCH via Bayesian model averaging》
---
作者:
Wilson Ye Chen, Richard H. Gerlach
---
最新提交年份:
2017
---
英文摘要:
As the dynamic structure of the financial markets is subject to dramatic changes, a model capable of providing consistently accurate volatility estimates must not make strong assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an observed price change to a volatility forecast (news impact function). We propose a new class of functional coefficient semiparametric volatility models where the news impact function is allowed to be any smooth function, and study its ability to estimate volatilities compared to the well known parametric proposals, in both a simulation study and an empirical study with real financial data. We estimate the news impact function using a Bayesian model averaging approach, implemented via a carefully developed Markov chain Monte Carlo (MCMC) sampling algorithm. Using simulations we show that our flexible semiparametric model is able to learn the shape of the news impact function from the observed data. When applied to real financial time series, our new model suggests that the news impact functions are significantly different in shapes for different asset types, but are similar for the assets of the same type.
---
中文摘要:
由于金融市场的动态结构会发生巨大变化,因此,能够提供一致准确的波动性估计的模型不得对价格随时间的变化做出强有力的假设。大多数波动率模型都采用一种特殊的参数函数形式,将观察到的价格变化与波动率预测(新闻影响函数)联系起来。我们提出了一类新的函数系数半参数波动率模型,其中允许新闻影响函数为任何光滑函数,并在模拟研究和真实金融数据的实证研究中,研究了其估计波动率的能力。我们使用贝叶斯模型平均法估计新闻影响函数,该方法通过精心开发的马尔可夫链蒙特卡罗(MCMC)采样算法实现。仿真结果表明,我们的柔性半参数模型能够从观测数据中学习新闻影响函数的形状。当应用于实时金融时间序列时,我们的新模型表明,不同资产类型的新闻影响函数形状显著不同,但相同类型的资产的新闻影响函数相似。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->
Semiparametric_GARCH_via_Bayesian_model_averaging.pdf
(2.47 MB)


雷达卡



京公网安备 11010802022788号







