《On The Ruin Problem With Investment When The Risky Asset Is A
Semimartingale》
---
作者:
Lioudmila Vostrikova (LAREMA), J\\\'er\\^ome Spielmann (LAREMA)
---
最新提交年份:
2018
---
英文摘要:
In this paper, we study the ruin problem with investment in a general framework where the business part X is a L{\\\'e}vy process and the return on investment R is a semimartingale. We obtain upper bounds on the finite and infinite time ruin probabilities that decrease as a power function when the initial capital increases. When R is a L{\\\'e}vy process, we retrieve the well-known results. Then, we show that these bounds are asymptotically optimal in the finite time case, under some simple conditions on the characteristics of X. Finally, we obtain a condition for ruin with probability one when X is a Brownian motion with negative drift and express it explicitly using the characteristics of R.
---
中文摘要:
在本文中,我们在一个一般的框架下研究了带有投资的破产问题,其中业务部分X是一个L{e}vy过程,投资回报率R是一个半鞅。我们得到了有限和无限时间破产概率的上界,当初始资本增加时,破产概率以幂函数形式减小。当R是一个L{e}vy过程时,我们检索已知的结果。然后,我们证明了在有限时间的情况下,在X的特征的一些简单条件下,这些界是渐近最优的。最后,我们得到了当X是负漂移布朗运动时,破产概率为1的条件,并用R的特征显式表示。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
PDF下载:
-->
On_The_Ruin_Problem_With_Investment_When_The_Risky_Asset_Is_A_Semimartingale.pdf
(417.66 KB)


雷达卡



京公网安备 11010802022788号







