《Dynamic time series clustering via volatility change-points》
---
作者:
Nick Whiteley
---
最新提交年份:
2019
---
英文摘要:
This note outlines a method for clustering time series based on a statistical model in which volatility shifts at unobserved change-points. The model accommodates some classical stylized features of returns and its relation to GARCH is discussed. Clustering is performed using a probability metric evaluated between posterior distributions of the most recent change-point associated with each series. This implies series are grouped together at a given time if there is evidence the most recent shifts in their respective volatilities were coincident or closely timed. The clustering method is dynamic, in that groupings may be updated in an online manner as data arrive. Numerical results are given analyzing daily returns of constituents of the S&P 500.
---
中文摘要:
本说明概述了一种基于统计模型的时间序列聚类方法,其中波动率在未观察到的变化点发生变化。该模型考虑了一些经典的风格化收益特征,并讨论了其与GARCH的关系。使用与每个序列相关的最新变化点的后验分布之间评估的概率度量进行聚类。这意味着,如果有证据表明其各自波动率的最新变化是一致的或时间相近的,则序列在给定的时间组合在一起。聚类方法是动态的,因为分组可以在数据到达时在线更新。通过分析标准普尔500指数成分股的日收益率,给出了数值结果。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->
Dynamic_time_series_clustering_via_volatility_change-points.pdf
(1.5 MB)


雷达卡



京公网安备 11010802022788号







