《Dynamic Mean-Variance Portfolio Optimisation》
---
作者:
Xiang Meng
---
最新提交年份:
2019
---
英文摘要:
The portfolio optimisation problem, first raised by Harry Markowitz in 1952, has been a fundamental and central topic to understanding the stock market and making decisions. There has been plenty of works contributing to development of the mean-variance optimisation (MVO) so far. In this paper, one kind of them, namely, dynamic mean-variance optimisation (DMVO) is mainly discussed. One can apply either precommitment or game-theoritical approach to address time-inconsistency in DMVO. We use the second approach to seek for a time-consistent strategy. After obtaining the optimal strategy, we extend the result to a CEV-driven economy. In order to prove the usefulness of them, strategies are fit into both real market data and simulated data. It turns out that the strategy whose assumptions are close to market conditions generally gives a better result. Lastly, a selected strategy is chosen to compare with another strategy came up by deep learning technique.
---
中文摘要:
投资组合优化问题是哈里·马科维茨于1952年首次提出的,它一直是理解股票市场和决策的一个基本和中心话题。到目前为止,已有大量的工作致力于均值-方差优化(MVO)的发展。本文主要讨论其中的一种,即动态均值-方差优化(DMVO)。可以应用预承诺或博弈论方法来解决DMVO中的时间不一致性。我们使用第二种方法来寻求时间一致的策略。在获得最优策略后,我们将结果推广到CEV驱动的经济。为了证明这些策略的有效性,我们将这些策略与真实市场数据和模拟数据进行了拟合。事实证明,假设接近市场条件的策略通常会产生更好的结果。最后,选择一种策略与深度学习技术提出的另一种策略进行比较。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->
Dynamic_Mean-Variance_Portfolio_Optimisation.pdf
(866.97 KB)


雷达卡



京公网安备 11010802022788号







