楼主: 2025TS
162 1

[课件与资料] CS 229 Machine Learning +CS221Artificial Intelligence: Principles and Techniques [推广有奖]

  • 0关注
  • 0粉丝

教授

79%

还不是VIP/贵宾

-

威望
0
论坛币
19 个
通用积分
57.4610
学术水平
9 点
热心指数
6 点
信用等级
5 点
经验
19210 点
帖子
1298
精华
0
在线时间
586 小时
注册时间
2023-4-8
最后登录
2024-11-5

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
CS 229 Machine Learning +CS221Artificial Intelligence: Principles and Techniques
某国际知名大学(TOP100)学习资料

Course Materials
There is no required text for this course. Notes will be posted periodically on the course web site. The following books are recommended as optional reference:
1.Christopher Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
2.Richard Duda, Peter Hart and David Stork, Pattern Classification, 2nd ed. John Wiley &Sons, 2001.
3.Tom Mitchell, Machine Learning. McGraw-Hill, 1997.
4.Richard Sutton and Andrew Barto, Reinforcement Learning: An introduction. MIT Press,1998


AI Overview
• CS221 (Aut): Artificial Intelligence: Principles and Techniques. Broad overview
of AI and applications, including robotics, vision, NLP, search, Bayesian networks,
and learning. Taught by Professor Andrew Ng.
Robotics
• CS223A (Win): Robotics from the perspective of building the robot and controlling
it; focus on manipulation. Taught by Professor Oussama Khatib (who builds the
big robots in the Robotics Lab).
• CS225A (Spr): A lab course from the same perspective, taught by Professor Khatib.
• CS225B (Aut): A lab course where you get to play around with making mobile
robots navigate in the real world. Taught by Dr. Kurt Konolige (SRI).
• CS277 (Spr): Experimental Haptics. Teaches haptics programming and touch
feedback in virtual reality. Taught by Professor Ken Salisbury, who works on
robot design, haptic devices/teleoperation, robotic surgery, and more.
• CS326A (Latombe): Motion planning. An algorithmic robot motion planning
course, by Professor Jean-Claude Latombe, who (literally) wrote the book on the
topic


Course Description
This course provides a broad introduction to machine learning and statistical
pattern recognition. Topics include: supervised learning
(generative/discriminative learning, parametric/non-parametric learning, neural
networks, support vector machines); unsupervised learning (clustering,
dimensionality reduction, kernel methods); learning theory (bias/variance
tradeoffs; VC theory; large margins); reinforcement learning and
adaptive control. The course will also discuss recent applications of machine
learning, such as to robotic control, data mining, autonomous navigation,
bioinformatics, speech recognition, and text and web data processing.


0.png

1.png


CS 229 Machine Learning.zip (6.73 MB, 需要: RMB 39 元)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Intelligence Techniques Artificial Principles principle

沙发
Rona-2028 发表于 2023-10-8 13:08:33 |只看作者 |坛友微信交流群
感谢楼主,做的很详细,很靠谱,多谢楼主分享啊

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 20:26