ivprobit结果是这样的
Checking reduced-form model...
first-stage regression
Source | SS df MS Number of obs = 1,544
-------------+---------------------------------- F(14, 1529) = 44.01
Model | 1087.33046 14 77.6664611 Prob > F = 0.0000
Residual | 2698.2233 1,529 1.76469804 R-squared = 0.2872
-------------+---------------------------------- Adj R-squared = 0.2807
Total | 3785.55376 1,543 2.45337249 Root MSE = 1.3284
------------------------------------------------------------------------------
e_scene | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
m_pnet | 1.697263 .2803529 6.05 0.000 1.147346 2.247179
h_age | -.024949 .0035732 -6.98 0.000 -.0319579 -.0179401
happiness | -.0371827 .0507445 -0.73 0.464 -.1367188 .0623535
lnh_edu | .1839193 .048722 3.77 0.000 .0883502 .2794883
h_health | -.072837 .0339737 -2.14 0.032 -.1394771 -.0061969
ln_income | .3171016 .0297509 10.66 0.000 .2587447 .3754585
older | -.9904885 .1660449 -5.97 0.000 -1.316188 -.6647886
peo_all | .0482668 .0206213 2.34 0.019 .0078177 .0887159
|
县代码 |
5202 | -.1234581 .1281845 -0.96 0.336 -.3748942 .127978
5301 | -.226968 .1285964 -1.76 0.078 -.479212 .0252759
5302 | -.1837638 .1297395 -1.42 0.157 -.43825 .0707224
6101 | -.0160559 .1271677 -0.13 0.900 -.2654974 .2333857
6102 | -.0242761 .1288075 -0.19 0.851 -.2769342 .228382
6201 | .1520308 .1328649 1.14 0.253 -.108586 .4126476
|
_cons | -.504876 .4482892 -1.13 0.260 -1.384203 .3744508
------------------------------------------------------------------------------
Two-step probit with endogenous regressors Number of obs = 1,544
Wald chi2(14) = 216.18
Prob > chi2 = 0.0000
------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
e_scene | .5354411 .2270394 2.36 0.018 .0904521 .9804302
h_age | -.0088357 .0073706 -1.20 0.231 -.0232819 .0056105
happiness | -.0155068 .0696044 -0.22 0.824 -.1519289 .1209154
lnh_edu | .0636106 .0799028 0.80 0.426 -.0929961 .2202172
h_health | -.0821827 .0488204 -1.68 0.092 -.1778689 .0135036
ln_income | .22098 .0856846 2.58 0.010 .0530412 .3889188
older | -.4678875 .3823308 -1.22 0.221 -1.217242 .281467
peo_all | .041224 .0294942 1.40 0.162 -.0165835 .0990315
|
县代码 |
5202 | -.1761632 .1743886 -1.01 0.312 -.5179585 .1656321
5301 | -.2335821 .1750174 -1.33 0.182 -.57661 .1094458
5302 | -.2354332 .1904669 -1.24 0.216 -.6087414 .1378751
6101 | .0389248 .1668802 0.23 0.816 -.2881545 .366004
6102 | .0563485 .1720591 0.33 0.743 -.2808811 .3935781
6201 | -.0603093 .1715669 -0.35 0.725 -.3965742 .2759556
|
_cons | -3.171017 .5856556 -5.41 0.000 -4.318881 -2.023153
------------------------------------------------------------------------------
Wald test of exogeneity: chi2(1) = 2.92 Prob > chi2 = 0.0873
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
.................................................. 100
Weak instrument robust tests and confidence sets for IV probit
H0: beta[dig_finance:e_scene] = 0
------------------------------------------------------------------------------
Test | Statistic p-value | Conf. level Conf. Set
------+---------------------------------+-------------------------------------
AR | chi2(1) = 7.12 0.0076 | 95% [ .201267, .958652]
------+---------------------------------+-------------------------------------
Wald | chi2(1) = 9.93 0.0016 | 95% [ .227776, .977587]
------------------------------------------------------------------------------
Confidence sets estimated for 100 points in [ -.14713, 1.35249].
Method = minimum distance (MD).
Tests assume i.i.d. errors. Small sample adjustments were used.
Wald statistic in last row is based on ivprobit estimation and is not robust to weak instruments.
请问在论文表格中要把哪些数据列出来呢?另外最后两行是什么错误呢?求助各位大佬


雷达卡


京公网安备 11010802022788号







