楼主: daxia101
39768 53

[学习分享] Statistical Computing with R 讲义(练习及答案)   [推广有奖]

  • 3关注
  • 1粉丝

已卖:195份资源

副教授

88%

还不是VIP/贵宾

-

威望
0
论坛币
4432 个
通用积分
68.3346
学术水平
0 点
热心指数
6 点
信用等级
0 点
经验
131572 点
帖子
213
精华
0
在线时间
1885 小时
注册时间
2006-7-12
最后登录
2025-8-25

楼主
daxia101 发表于 2011-11-8 01:32:24 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Maryland大学Eric V. Slud的课件

[size=+2]OUTLINE of Course TOPICS statistics705_umd_slud.zip (4.83 MB)

   1. Introduction to R:

Starting and quitting R, on-line help, R operators and functions, creating
R objects, data types (vectors, matrices, factors, functions, lists), managing
data (combining  objects, subsetting, creation of frames), R graphics.

   2. Monte Carlo and Simulation in R:

Basic random number generation, applications of LLN and CLT  in simulations,
numerical integration, importance sampling, empirical distributions, Markov Chain
Monte Carlo. Managing loops in R.

   3. Numerical Optimization in Statistics:

Objective functions in statistics, and managing functions in  R. Linear and nonlinear
least squares, special considerations in maximizing likelihoods, penalized likelihood,
steepest descent, quasi-Newton-Raphson methods, constrained maximization, EM
algorithm. Diagnostics for misspecified models.

   4. Linear and Generalized Linear Models:

Regression summaries, model fitting, prediction, model updating, analysis of residuals,
model criticism, ANOVA, generalized linear  models, specifying link and variance
functions, stepwise model selection, deviance analysis.

Comparisons of implementations in R and SAS. Fitting mixed-effect (generalized)
linear models in R.

   5. Bootstrapping Methodology:

Parametric bootstrap, empirical CDF, bootstrap standard errors and confidence intervals,
estimation of bias, jackknife, application to regression.

   6. Smoothing & Nonparametric Regression:

Spline smoothing, kernel smoothing, selecting tuning parameters by cross-validation.
Graphical aspects of smoothing.

   7. MCMC and the Gibbs Sampler.

Definitions and basic ideas of MCMC ad Gibbs-Sampler simulation methodology,
including a brief introduction to `Bayesian Computing' using BUGS through R.

   8. Mixed and Multilevel Models fitted and interpreted via
       Likelihood methods and Bayes (MCMC) methods in R
.






二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Statistical statistica computing statistic Statist generation creating creation managing factors

已有 2 人评分经验 论坛币 收起 理由
oliyiyi + 100 精彩帖子
ltx5151 + 20 根据规定进行奖励

总评分: 经验 + 100  论坛币 + 20   查看全部评分

本帖被以下文库推荐

沙发
benji427 在职认证  发表于 2011-11-8 01:43:42
谢谢分享啊
好东西

藤椅
yuzaiyangpeter 发表于 2011-11-8 02:42:00
下下来看看

板凳
Prinse 发表于 2011-11-8 03:01:05
顶一下,不错的东西……

报纸
trier2006 发表于 2011-11-8 09:39:12
呵呵不错,谢谢分享。
最好的医生是自己,最好的药物是时间……

地板
miumiuzhang 发表于 2011-11-8 09:55:41
能直接传一份么,没币了。。 whsaizhangww@163.com,谢谢先

7
yuchieh_y 发表于 2011-11-8 19:14:53
thanks a lot

8
daxia101 发表于 2011-11-8 22:59:21
miumiuzhang, 这可是免费的

9
pywang61 发表于 2011-11-14 10:05:46
這的確是好東西...

10
园丁鸟 发表于 2012-3-6 14:12:07
好!非常感谢!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-29 11:47