楼主: zhangxt_777
1716 2

[教与学] 求助 急!博弈论习题 英文题目。。。急求急求 [推广有奖]

  • 0关注
  • 0粉丝

高中生

0%

还不是VIP/贵宾

-

威望
0
论坛币
902 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
207 点
帖子
12
精华
0
在线时间
24 小时
注册时间
2012-5-2
最后登录
2015-12-1

楼主
zhangxt_777 发表于 2013-5-5 07:49:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
1.(strategic voting)
suppose that there are three candidates,X Y Z.thecandidates have nonono action (i.e. the candidates are not the players) in this game. Suppose that there are five voters(A B C D E )as the players of this game. Simultaneously and independently,five voters select single candidates.
The candidates who obtains the most votes wins the election,and if two candidates have the same vote share ,the probability of winning is 50% for each .The preferences of five votersare as follow
VoterA:X>Y>Z
VoterB:X>Y>Z
VoterC:Y>X>Z
VoterD:Y>X>Z
VoterE:Z >Y>X
specifically,assume that the voter's utility is 2 if her most preferred candidate wins.1 if her second preferredcandidate wins .and0 if her least preferredcandidate wins
(a)show that that the strategy profile(X X Y Y Z )is not a nash equilibrium.the strategy profile (X X Y Y Z )means that each player votes for her most preferred candidate   i.e.voters A and B vote for X,VotersCand D vote for Y ,and VoterE Vote for Z (In this case, Candidate Xwins with probability 50% , and Y wins with remainIng probability 50%)
(b)Show that the strategy profile(Z  Z Z Z X)is aNash equilibrium . The Strategy profiles( Z  Z  Z Z X) means that each player Vote forher least preferred Candidate ,
(c)Find One pure  straitegy profile which is a Nash equilibrium Such that CandidateY wins .prove that your Pure Strategy profile is actually a Nash equilibrium

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:博弈论 SIMULTANEOUS equilibrium Probability Independent 博弈论 game strategic suppose winning

沙发
zhangxt_777 发表于 2013-5-5 20:58:35 来自手机
。。。。。没人么。。。。

藤椅
rivuletwj 发表于 2013-5-6 12:36:05
(a)If E choose Y,his expected payoff will be 1 which is larger than the expected payoff of choosing Z.
(b)No one can change the result of the game assuming other players' strategies are unchanged.
(c)(X X Y Y Y)

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 08:31