误差修正模型的结果,看上面一部分还是下面一部分?怎么分析?协整方程是从这里得出来的吗
Vector Error Correction Estimates
Date: 11/12/13 Time: 01:32
Sample (adjusted): 1981 2010
Included observations: 30 after adjustments
Standard errors in ( ) & t-statistics in [ ]
Cointegrating Eq: CointEq1
LNC(-1) 1.000000
LNNFE(-1) 1.772511
(0.30015)
[ 5.90537]
LNNFS(-1) -2.391080
(0.25440)
[-9.39904]
LNSHOURU(-1) 0.713387
(0.18866)
[ 3.78128]
LNR(-1) -0.310293
(0.08521)
[-3.64131]
C -10.58483
Error Correction: D(LNC) D(LNNFE) D(LNNFS) D(LNSHOURU) D(LNR)
CointEq1 -0.138744 -0.162125 -0.001294 -0.174237 -0.673043
(0.05411) (0.29438) (0.19143) (0.06206) (0.26991)
[-2.56388] [-0.55073] [-0.00676] [-2.80764] [-2.49360]
D(LNC(-1)) 0.514566 -1.472867 -0.586827 0.193735 2.847597
(0.24517) (1.33371) (0.86728) (0.28116) (1.22282)
[ 2.09882] [-1.10434] [-0.67663] [ 0.68907] [ 2.32870]
D(LNC(-2)) -0.185115 1.363758 0.226012 -0.034537 2.155488
(0.22551) (1.22679) (0.79776) (0.25862) (1.12480)
[-0.82085] [ 1.11165] [ 0.28331] [-0.13354] [ 1.91634]
D(LNNFE(-1)) 0.095507 -0.214040 -0.008261 0.150839 0.864134
(0.12379) (0.67341) (0.43790) (0.14196) (0.61742)
[ 0.77153] [-0.31785] [-0.01886] [ 1.06255] [ 1.39959]
D(LNNFE(-2)) 0.000310 -0.425705 -0.116700 -0.015031 0.564444
(0.08352) (0.45434) (0.29545) (0.09578) (0.41656)
[ 0.00371] [-0.93698] [-0.39500] [-0.15693] [ 1.35500]
D(LNNFS(-1)) -0.191664 -0.359341 -0.284874 -0.318197 -0.987565
(0.21024) (1.14372) (0.74373) (0.24110) (1.04863)
[-0.91163] [-0.31419] [-0.38303] [-1.31975] [-0.94177]
D(LNNFS(-2)) 0.093790 0.129565 -0.052748 0.061177 -0.389324
(0.15530) (0.84485) (0.54939) (0.17810) (0.77461)
[ 0.60391] [ 0.15336] [-0.09601] [ 0.34350] [-0.50261]
D(LNSHOURU(-1)) 0.267082 -1.501144 -1.136481 0.159723 -1.696607
(0.27392) (1.49011) (0.96899) (0.31413) (1.36623)
[ 0.97503] [-1.00740] [-1.17285] [ 0.50847] [-1.24182]
D(LNSHOURU(-2)) -0.083315 1.792839 1.240657 0.318592 -2.822654
(0.25661) (1.39594) (0.90775) (0.29427) (1.27988)
[-0.32468] [ 1.28432] [ 1.36674] [ 1.08263] [-2.20540]
D(LNR(-1)) -0.037050 0.014101 -0.061569 -0.018378 -0.410341
(0.04504) (0.24504) (0.15934) (0.05166) (0.22467)
[-0.82252] [ 0.05755] [-0.38639] [-0.35578] [-1.82645]
D(LNR(-2)) -0.014664 -0.197250 0.053579 -0.065368 -0.317640
(0.04003) (0.21775) (0.14160) (0.04590) (0.19964)
[-0.36634] [-0.90587] [ 0.37839] [-1.42404] [-1.59103]
C 0.060141 -0.039836 0.110854 0.060248 0.045467
(0.03886) (0.21142) (0.13748) (0.04457) (0.19384)
[ 1.54746] [-0.18842] [ 0.80632] [ 1.35180] [ 0.23456]
R-squared 0.865364 0.553666 0.437397 0.813981 0.687944
Adj. R-squared 0.783086 0.280907 0.093583 0.700303 0.497243
Sum sq. resids 0.017011 0.503405 0.212871 0.022371 0.423179
S.E. equation 0.030742 0.167233 0.108748 0.035254 0.153330
F-statistic 10.51759 2.029869 1.272193 7.160386 3.607450
Log likelihood 69.55830 18.74520 31.65583 65.44954 21.34919
Akaike AIC -3.837220 -0.449680 -1.310389 -3.563303 -0.623279
Schwarz SC -3.276741 0.110799 -0.749910 -3.002824 -0.062801
Mean dependent 0.109878 -0.013601 0.067496 0.114403 -0.027822
S.D. dependent 0.066006 0.197210 0.114224 0.064397 0.216245
Determinant resid covariance (dof adj.) 1.56E-13
Determinant resid covariance 1.21E-14
Log likelihood 267.8055
Akaike information criterion -13.52037
Schwarz criterion -10.48444


雷达卡



京公网安备 11010802022788号







