现在在学stata中面板数据处理这快的东西,想要做一下无固定效应模型、个体固定效应模型、时间固定效应模型和双向固定效应模型想请教一下论坛里的大虾们,无面板数据的无固定效应模型是不是就是随机效应模型啊?
还有就是在做个体固定效应模型的时候,得到的结果如下,看不懂,不知道命令有没有错,麻烦谁能帮我看一下
. xtreg x p nights aincome age education i.id, fe robust
note: 2.id omitted because of collinearity
note: 3.id omitted because of collinearity
note: 4.id omitted because of collinearity
note: 5.id omitted because of collinearity
note: 6.id omitted because of collinearity
note: 7.id omitted because of collinearity
note: 8.id omitted because of collinearity
note: 9.id omitted because of collinearity
note: 10.id omitted because of collinearity
note: 11.id omitted because of collinearity
note: 12.id omitted because of collinearity
note: 13.id omitted because of collinearity
note: 14.id omitted because of collinearity
note: 15.id omitted because of collinearity
note: 16.id omitted because of collinearity
note: 17.id omitted because of collinearity
note: 18.id omitted because of collinearity
note: 19.id omitted because of collinearity
note: 20.id omitted because of collinearity
note: 21.id omitted because of collinearity
note: 22.id omitted because of collinearity
note: 23.id omitted because of collinearity
note: 24.id omitted because of collinearity
note: 25.id omitted because of collinearity
note: 26.id omitted because of collinearity
note: 27.id omitted because of collinearity
note: 28.id omitted because of collinearity
note: 29.id omitted because of collinearity
note: 30.id omitted because of collinearity
note: 31.id omitted because of collinearity
note: 32.id omitted because of collinearity
note: 33.id omitted because of collinearity
note: 34.id omitted because of collinearity
note: 35.id omitted because of collinearity
note: 36.id omitted because of collinearity
note: 37.id omitted because of collinearity
note: 38.id omitted because of collinearity
note: 39.id omitted because of collinearity
Fixed-effects (within) regression Number of obs = 312
Group variable: id Number of groups = 39
R-sq: within = 0.0639 Obs per group: min = 8
between = 0.0524 avg = 8.0
overall = 0.0469 max = 8
F(5,38) = 3.15
corr(u_i, Xb) = 0.1186 Prob > F = 0.0178
(Std. Err. adjusted for 39 clusters in id)
------------------------------------------------------------------------------
| Robust
x | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
p | -.000778 .0010395 -0.75 0.459 -.0028824 .0013263
nights | -.0184407 .1534497 -0.12 0.905 -.3290833 .2922019
aincome | .0035044 .001795 1.95 0.058 -.0001295 .0071382
age | -.4237238 .4272794 -0.99 0.328 -1.288706 .4412581
education | -.9090608 1.153993 -0.79 0.436 -3.245198 1.427076
|
id |
2 | 0 (omitted)
3 | 0 (omitted)
4 | 0 (omitted)
5 | 0 (omitted)
6 | 0 (omitted)
7 | 0 (omitted)
8 | 0 (omitted)
9 | 0 (omitted)
10 | 0 (omitted)
11 | 0 (omitted)
12 | 0 (omitted)
13 | 0 (omitted)
14 | 0 (omitted)
15 | 0 (omitted)
16 | 0 (omitted)
17 | 0 (omitted)
18 | 0 (omitted)
19 | 0 (omitted)
20 | 0 (omitted)
21 | 0 (omitted)
22 | 0 (omitted)
23 | 0 (omitted)
24 | 0 (omitted)
25 | 0 (omitted)
26 | 0 (omitted)
27 | 0 (omitted)
28 | 0 (omitted)
29 | 0 (omitted)
30 | 0 (omitted)
31 | 0 (omitted)
32 | 0 (omitted)
33 | 0 (omitted)
34 | 0 (omitted)
35 | 0 (omitted)
36 | 0 (omitted)
37 | 0 (omitted)
38 | 0 (omitted)
39 | 0 (omitted)
|
_cons | 69.32457 27.17312 2.55 0.015 14.31548 124.3337
-------------+----------------------------------------------------------------
sigma_u | 28.137014
sigma_e | 7.0153835
rho | .9414732 (fraction of variance due to u_i)
------------------------------------------------------------------------------
reg x p nights aincome age education i.id
xtreg x p nights aincome age education i.id, fe robust
这两条命令的区别是什么呢?
还有一个问题就是
xtreg x p nights aincome age education yr*, fe是双向的固定效应模型,那如何做仅仅是时间固定效应模型的回归呢?
望高人解答
.


雷达卡







京公网安备 11010802022788号







