楼主: neuroexplorer
1964 1

[学习分享] Building Loss Given Default Scorecard Using Weight of Evidence Bins in SAS Enter [推广有奖]

  • 5关注
  • 23粉丝

已卖:5901份资源

学科带头人

79%

还不是VIP/贵宾

-

威望
0
论坛币
29250 个
通用积分
850.5514
学术水平
58 点
热心指数
75 点
信用等级
63 点
经验
176544 点
帖子
3215
精华
0
在线时间
1416 小时
注册时间
2013-7-21
最后登录
2025-10-2

楼主
neuroexplorer 发表于 2016-2-19 12:27:54 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Building Loss Given Default Scorecard Using Weight of Evidence Bins in SAS Enter.pdf (918.37 KB)




The Credit Scoring add-on in SAS® Enterprise Miner™ is widely used to build binary target (good, bad) scorecards for probability of default. The process involves grouping variables using weight of evidence, and then performing logistic regression to produce predicted probabilities. Learn how to use the same tools to build binned variable scorecards for Loss Given Default. We will explain the theoretical principles behind the method and use actual data to demonstrate how we did it

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:scorecard evidence Building Default Weight Enter

沙发
neuroexplorer 发表于 2016-2-20 00:59:12
WoE is a good way to select variables for modeling.

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-2 15:53