楼主: 爱萌
46365 340

[学科前沿] 谁能够把概率这个最基本的概念讲清楚 [推广有奖]

271
xmok77 发表于 2009-8-27 09:15:58
yncxhz 发表于 2009-8-26 23:02
突然想到一个问题:“伯努利”实验有意义吗?考察抛硬币实验,伯努利实验要求实验条件不变,若硬币材质形状不变,出手高度,力量,角度不变,地面情况不变,空中情况不变,则按物理学知识其运动轨迹不变,那么实验结论应该不会改变。也就是频率还有意义吗?频率没有意义,概率还有意义吗?可怕
我想这儿有个关键之处在于,贝努力试验的“条件不变”,并非所有硬币运动的物理条件不变,而只是只“基本条件不变”,何谓基本条件就是指诸如硬币质地均匀,硬币抛离不再被人控制等等,而“空气情况”、“高度”、“力度”这些事实上也不能完全控制,也不需要控制,这也是随机性产生的源泉之一。
以出世的精神做入世的事情

272
xmok77 发表于 2009-8-27 09:26:26
在严格的试验设计中,甚至对“基本条件”之外的条件,有意进行“随机化”,即:不让其有固定的规律,
像生成随机数的一个应用就是为了处理该种问题
以出世的精神做入世的事情

273
sungmoo 发表于 2009-8-27 09:39:07
如果“千王”去扔硬币(或骰子),估计就没有“随机性”了。

有时,“随机性”,是人们承认“认识局限性”的体现。

274
xmok77 发表于 2009-8-27 10:17:18
如果是千王扔出的色子,那我想也有某些条件是不被他控制的,因而也会出现某种随机
不过千王的随机规律有利于他且不大容易被认识
多次试验可以暴露
以出世的精神做入世的事情

275
sungmoo 发表于 2009-8-27 10:54:01
xmok77 发表于 2009-8-27 10:17 如果是千王扔出的色子,那我想也有某些条件是不被他控制的,因而也会出现某种随机
所以,千王也要不断学习+练习(以保证“小概率事件”实际不发生)。

(千王的不同境界,就是“小概率事件”的概率究竟有多小——假设可以用概率来描述)

276
vngan 发表于 2009-8-27 12:30:16
估计楼主对有些概念的理解出现了偏差,然后就往牛角尖上去了,哈哈哈,这样的事我曾经干过,哈哈哈

277
zhoutai 发表于 2009-8-27 15:13:27
不懂 太高深

278
lwzxy 发表于 2009-8-27 15:38:32
yncxhz 发表于 2009-8-27 00:11
概率中的随机性是来源于事物的本质,还是来源于人类对事物认知的欠缺?如果是前者概率应该是真实存在的,如果是后者,概率迟早会消亡。
呵呵,愚以为yncxhz 思考地深刻。恐怕楼主在提出“概率这一基本概念”的问题时,其义并非简单指“概率的定义是什么”本身。而迄今为止的讨论,个人感觉,仿佛已开始渐趋“概率”意义的核心。
其中有一点仿佛是需要澄清的,即倒底何谓“随机”?倾听楼上几位的发言,感觉是将随机定义为“不可预见性”。个人认为,恐怕并非如此简单。一个人,纵然相信因果决定论,其仍可承认未来的不可预见性。而作为随机论的信仰者,则其重点在于,不承认“因果律”,至少是在微观领域(当然,对一个对某些事物相信存在因果律而对另一些事物则相信随机的人而言,这一边界定于何处仿佛也不那么容易)。正如yncxhz 所言,如承认随机论,则概率的存在似乎是必要的;但如相信因果决定论,那么,概率的命运即足可令人担忧了,呵呵。
不过,无论概率在数学的意义上其命运最终如何,其与统计在经济学上的命运恐怕更加不容乐观。个人同意的看法是,将数学方法引入经济学本身即是个错误,就如Mises所言,“数理经济学是死路一条”。
最后,引用Rothbard《What Is the Proper Way to Study Man?》一文中的一段,希望对楼主的问题的解答有所帮助(不会翻译,又无中文版,只能将就看吧,呵呵)。
Probability, Statistics, and TruthRichard von Mises's great classic, Probability, Statistics, and Truth, effected a revolution in the nature of probability theory during the 1920s and 1930s. "Classical" probability theory considered numerical probability to be derived from "equal ignorance" about the potential events being considered: thus, the probability of obtaining a "three-spot" upon the throw of a die was considered to be "one-sixth" because there are six possibilities and we do not know if one possibility is stronger than another. Mises (the brother of Ludwig von Mises), demonstrated the contradictions of this approach, insisting both that the probability is not one-sixth if the die happens to be loaded, and that the only way to find out if a die is loaded is by tossing it a large number of times. Thus was born the "frequency theory" of numerical probability, based on knowledge and not on ignorance. The frequency theory implies that to say the probability of a die showing "three" is "one-sixth" means that, if a die is thrown a great many times, the number of occasions on which "three" is obtained will approach one out of every six throws. But this means that numerical and mathematical probability theory cannot really apply to each single case, but only to the proportion of randomly-selected homogeneous events, as in tossing a coin or throwing a die. This fact is much more true of the unique, nonrandom events of ordinary human (and entrepreneurial) action. It becomes evident from Richard von Mises's fundamental work that mathematical probability theory can never be applicable to economics, or to any other study of human action.

At the present time, when mathematical probability theory is very heavily used in economics and sociology, the translation of the third German edition of Richard von Mises's work is particularly welcome. For Mises here refutes various modern criticisms of his theory and demolishes the attempts of such philosophers as Carnap and Reichenbach to establish a mathematical theory for individual cases, as contrasted to large homogeneous classes, of human actions.

279
sungmoo 发表于 2009-8-27 16:04:39
lwzxy 发表于 2009-8-27 15:38 一个人,纵然相信因果决定论,其仍可承认未来的不可预见性
我想听听其中的原因。

280
sungmoo 发表于 2009-8-27 16:07:15
lwzxy 发表于 2009-8-27 15:38 正如yncxhz 所言,如承认随机论,则概率的存在似乎是必要的;但如相信因果决定论,那么,概率的命运即足可令人担忧了
坚持决定论,你就可以完全把握“初值条件”了吗?

(前面提到过“混沌”吧?有人称之为“内禀随机性”,个人以为,没有必要)

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-25 21:54