本人第一次共享东西 本不该收费 但每次下载别人的东西都得收费 没办法只得先攒点钱
本书是我老师极力推荐 很适合R刚入门者做时间序列分析
1 Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 R language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Plots, trends, and seasonal variation . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 A flying start: Air passenger bookings . . . . . . . . . . . . . . . . 4
1.4.2 Unemployment: Maine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Multiple time series: Electricity, beer and chocolate data 10
1.4.4 Quarterly exchange rate: GBP to NZ dollar . . . . . . . . . . . 14
1.4.5 Global temperature series . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Decomposition of series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.3 Estimating trends and seasonal effects . . . . . . . . . . . . . . . 20
1.5.4 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.5 Decomposition in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Summary of commands used in examples . . . . . . . . . . . . . . . . . . . 24
1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Expectation and the ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Expected value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 The ensemble and stationarity . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Ergodic series* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Variance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.5 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
ix
x Contents
2.3 The correlogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Example based on air passenger series . . . . . . . . . . . . . . . 37
2.3.3 Example based on the Font Reservoir series . . . . . . . . . . . 40
2.4 Covariance of sums of random variables . . . . . . . . . . . . . . . . . . . . 41
2.5 Summary of commands used in examples . . . . . . . . . . . . . . . . . . . 42
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Forecasting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Leading variables and associated variables . . . . . . . . . . . . . . . . . . 45
3.2.1 Marine coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Building approvals publication . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 Gas supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Bass model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Model definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.3 Interpretation of the Bass model* . . . . . . . . . . . . . . . . . . . 51
3.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Exponential smoothing and the Holt-Winters method . . . . . . . . 55
3.4.1 Exponential smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Holt-Winters method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.3 Four-year-ahead forecasts for the air passenger data . . . 62
3.5 Summary of commands used in examples . . . . . . . . . . . . . . . . . . . 64
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4 Basic Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Simulation in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Second-order properties and the correlogram . . . . . . . . . . 69
4.2.5 Fitting a white noise model . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 The backward shift operator . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.4 Random walk: Second-order properties . . . . . . . . . . . . . . . 72
4.3.5 Derivation of second-order properties* . . . . . . . . . . . . . . . 72
4.3.6 The difference operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Fitted models and diagnostic plots . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Simulated random walk series . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Exchange rate series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Contents xi
4.4.3 Random walk with drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Autoregressive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Stationary and non-stationary AR processes . . . . . . . . . . 79
4.5.3 Second-order properties of an AR(1) model . . . . . . . . . . . 80
4.5.4 Derivation of second-order properties for an AR(1)
process* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.5 Correlogram of an AR(1) process . . . . . . . . . . . . . . . . . . . . 81
4.5.6 Partial autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Fitted models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6.1 Model fitted to simulated series . . . . . . . . . . . . . . . . . . . . . 82
4.6.2 Exchange rate series: Fitted AR model . . . . . . . . . . . . . . . 84
4.6.3 Global temperature series: Fitted AR model . . . . . . . . . . 85
4.7 Summary of R commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87