楼主: 飞天玄舞6
2744 4

[数据挖掘书籍] 【独家发布】概率图模型:原理与技术(英文版) [推广有奖]

  • 3关注
  • 31粉丝

VIP1

学科带头人

12%

(VIP/贵宾)九级

73%

TA的文库  其他...

综合文库

威望
0
论坛币
154041 个
通用积分
4221.6395
学术水平
128 点
热心指数
148 点
信用等级
102 点
经验
76624 点
帖子
1503
精华
0
在线时间
1509 小时
注册时间
2013-12-2
最后登录
2021-10-20

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
AUTHOR:Daphne Koller Nir Friedman

CONTENT

Acknowledgments xxiii
List of Figures xxv
List of Algorithms xxxi
List of Boxes xxxiii
1 Introduction 1
1.1 Motivation 1
1.2 Structured Probabilistic Models 2
1.2.1 Probabilistic Graphical Models 3
1.2.2 Representation, Inference, Learning 5
1.3 Overview and Roadmap 6
1.3.1 Overview of Chapters 6
1.3.2 Reader’s Guide 9
1.3.3 Connection to Other Disciplines 11
1.4 Historical Notes 12
2 Foundations 15
2.1 Probability Theory 15
2.1.1 Probability Distributions 15
2.1.2 Basic Concepts in Probability 18
2.1.3 Random Variables and Joint Distributions 19
2.1.4 Independence and Conditional Independence 23
2.1.5 Querying a Distribution 25
2.1.6 Continuous Spaces 27
2.1.7 Expectation and Variance 31
2.2 Graphs 34
2.2.1 Nodes and Edges 34
2.2.2 Subgraphs 35
2.2.3 Paths and Trails 36
x CONTENTS
2.2.4 Cycles and Loops 36
2.3 Relevant Literature 39
2.4 Exercises 39
I Representation 43
3 The Bayesian Network Representation 45
3.1 Exploiting Independence Properties 45
3.1.1 Independent Random Variables 45
3.1.2 The Conditional Parameterization 46
3.1.3 The Naive Bayes Model 48
3.2 Bayesian Networks 51
3.2.1 The Student Example Revisited 52
3.2.2 Basic Independencies in Bayesian Networks 56
3.2.3 Graphs and Distributions 60
3.3 Independencies in Graphs 68
3.3.1 D-separation 69
3.3.2 Soundness and Completeness 72
3.3.3 An Algorithm for d-Separation 74
3.3.4 I-Equivalence 76
3.4 From Distributions to Graphs 78
3.4.1 Minimal I-Maps 78
3.4.2 Perfect Maps 81
3.4.3 Finding Perfect Maps  83
3.5 Summary 92
3.6 Relevant Literature 93
3.7 Exercises 96
4 Undirected Graphical Models 103
4.1 The Misconception Example 103
4.2 Parameterization 106
4.2.1 Factors 106
4.2.2 Gibbs Distributions and Markov Networks 108
4.2.3 Reduced Markov Networks 110
4.3 Markov Network Independencies 114
4.3.1 Basic Independencies 114
4.3.2 Independencies Revisited 117
4.3.3 From Distributions to Graphs 120
4.4 Parameterization Revisited 122
4.4.1 Finer-Grained Parameterization 123
4.4.2 Overparameterization 128
4.5 Bayesian Networks and Markov Networks 134
4.5.1 From Bayesian Networks to Markov Networks 134
4.5.2 From Markov Networks to Bayesian Networks 137
CONTENTS xi
4.5.3 Chordal Graphs 139
4.6 Partially Directed Models 142
4.6.1 Conditional Random Fields 142
4.6.2 Chain Graph Models  148
4.7 Summary and Discussion 151
4.8 Relevant Literature 152
4.9 Exercises 153
5 Local Probabilistic Models 157
5.1 Tabular CPDs 157
5.2 Deterministic CPDs 158
5.2.1 Representation 158
5.2.2 Independencies 159
5.3 Context-Specific CPDs 162
5.3.1 Representation 162
5.3.2 Independencies 171
5.4 Independence of Causal Influence 175
5.4.1 The Noisy-Or Model 175
5.4.2 Generalized Linear Models 178
5.4.3 The General Formulation 182
5.4.4 Independencies 184
5.5 Continuous Variables 185
5.5.1 Hybrid Models 189
5.6 Conditional Bayesian Networks 191
5.7 Summary 193
5.8 Relevant Literature 194
5.9 Exercises 195
6 Template-Based Representations 199
6.1 Introduction 199
6.2 Temporal Models 200
6.2.1 Basic Assumptions 201
6.2.2 Dynamic Bayesian Networks 202
6.2.3 State-Observation Models 207
6.3 Template Variables and Template Factors 212
6.4 Directed Probabilistic Models for Object-Relational Domains 216
6.4.1 Plate Models 216
6.4.2 Probabilistic Relational Models 222
6.5 Undirected Representation 228
6.6 Structural Uncertainty  232
6.6.1 Relational Uncertainty 233
6.6.2 Object Uncertainty 235
6.7 Summary 240
6.8 Relevant Literature 242
6.9 Exercises 243
xii CONTENTS
7 Gaussian Network Models 247
7.1 Multivariate Gaussians 247
7.1.1 Basic Parameterization 247
7.1.2 Operations on Gaussians 249
7.1.3 Independencies in Gaussians 250
7.2 Gaussian Bayesian Networks 251
7.3 Gaussian Markov Random Fields 254
7.4 Summary 257
7.5 Relevant Literature 258
7.6 Exercises 258
8 The Exponential Family 261
8.1 Introduction 261
8.2 Exponential Families 261
8.2.1 Linear Exponential Families 263
8.3 Factored Exponential Families 266
8.3.1 Product Distributions 266
8.3.2 Bayesian Networks 267
8.4 Entropy and Relative Entropy 269
8.4.1 Entropy 269
8.4.2 Relative Entropy 272
8.5 Projections 273
8.5.1 Comparison 274
8.5.2 M-Projections 277
8.5.3 I-Projections 282
8.6 Summary 282
8.7 Relevant Literature 283
8.8 Exercises 283
II Inference 285
9 Variable Elimination 287
9.1 Analysis of Complexity 288
9.1.1 Analysis of Exact Inference 288
9.1.2 Analysis of Approximate Inference 290
9.2 Variable Elimination: The Basic Ideas 292
9.3 Variable Elimination 296
9.3.1 Basic Elimination 297
9.3.2 Dealing with Evidence 303
9.4 Complexity and Graph Structure: Variable Elimination 306
9.4.1 Simple Analysis 306
9.4.2 Graph-Theoretic Analysis 306
9.4.3 Finding Elimination Orderings  310
9.5 Conditioning  315
CONTENTS xiii
9.5.1 The Conditioning Algorithm 315
9.5.2 Conditioning and Variable Elimination 318
9.5.3 Graph-Theoretic Analysis 322
9.5.4 Improved Conditioning 323
9.6 Inference with Structured CPDs  325
9.6.1 Independence of Causal Influence 325
9.6.2 Context-Specific Independence 329
9.6.3 Discussion 335
9.7 Summary and Discussion 336
9.8 Relevant Literature 337
9.9 Exercises 338
10 Clique Trees 345
10.1 Variable Elimination and Clique Trees 345
10.1.1 Cluster Graphs 346
10.1.2 Clique Trees 346
10.2 Message Passing: Sum Product 348
10.2.1 Variable Elimination in a Clique Tree 349
10.2.2 Clique Tree Calibration 355
10.2.3 A Calibrated Clique Tree as a Distribution 361
10.3 Message Passing: Belief Update 364
10.3.1 Message Passing with Division 364
10.3.2 Equivalence of Sum-Product and Belief Update Messages 368
10.3.3 Answering Queries 369
10.4 Constructing a Clique Tree 372
10.4.1 Clique Trees from Variable Elimination 372
10.4.2 Clique Trees from Chordal Graphs 374
10.5 Summary 376
10.6 Relevant Literature 377
10.7 Exercises 378
11 Inference as Optimization 381
11.1 Introduction 381
11.1.1 Exact Inference Revisited  382
11.1.2 The Energy Functional 384
11.1.3 Optimizing the Energy Functional 386
11.2 Exact Inference as Optimization 386
11.2.1 Fixed-Point Characterization 388
11.2.2 Inference as Optimization 390
11.3 Propagation-Based Approximation 391
11.3.1 A Simple Example 391
11.3.2 Cluster-Graph Belief Propagation 396
11.3.3 Properties of Cluster-Graph Belief Propagation 399
11.3.4 Analyzing Convergence  401
11.3.5 Constructing Cluster Graphs 404
xiv CONTENTS
11.3.6 Variational Analysis 411
11.3.7 Other Entropy Approximations  414
11.3.8 Discussion 428
11.4 Propagation with Approximate Messages  430
11.4.1 Factorized Messages 431
11.4.2 Approximate Message Computation 433
11.4.3 Inference with Approximate Messages 436
11.4.4 Expectation Propagation 442
11.4.5 Variational Analysis 445
11.4.6 Discussion 448
11.5 Structured Variational Approximations 448
11.5.1 The Mean Field Approximation 449
11.5.2 Structured Approximations 456
11.5.3 Local Variational Methods  469
11.6 Summary and Discussion 473
11.7 Relevant Literature 475
11.8 Exercises 477
12 Particle-Based Approximate Inference 487
12.1 Forward Sampling 488
12.1.1 Sampling from a Bayesian Network 488
12.1.2 Analysis of Error 490
12.1.3 Conditional Probability Queries 491
12.2 Likelihood Weighting and Importance Sampling 492
12.2.1 Likelihood Weighting: Intuition 492
12.2.2 Importance Sampling 494
12.2.3 Importance Sampling for Bayesian Networks 498
12.2.4 Importance Sampling Revisited 504
12.3 Markov Chain Monte Carlo Methods 505
12.3.1 Gibbs Sampling Algorithm 505
12.3.2 Markov Chains 507
12.3.3 Gibbs Sampling Revisited 512
12.3.4 A Broader Class of Markov Chains  515
12.3.5 Using a Markov Chain 518
12.4 Collapsed Particles 526
12.4.1 Collapsed Likelihood Weighting  527
12.4.2 Collapsed MCMC 531
12.5 Deterministic Search Methods  536
12.6 Summary 540
12.7 Relevant Literature 541
12.8 Exercises 544
13 MAP Inference 551
13.1 Overview 551
13.1.1 Computational Complexity 551
CONTENTS xv
13.1.2 Overview of Solution Methods 552
13.2 Variable Elimination for (Marginal) MAP 554
13.2.1 Max-Product Variable Elimination 554
13.2.2 Finding the Most Probable Assignment 556
13.2.3 Variable Elimination for Marginal MAP  559
13.3 Max-Product in Clique Trees 562
13.3.1 Computing Max-Marginals 562
13.3.2 Message Passing as Reparameterization 564
13.3.3 Decoding Max-Marginals 565
13.4 Max-Product Belief Propagation in Loopy Cluster Graphs 567
13.4.1 Standard Max-Product Message Passing 567
13.4.2 Max-Product BP with Counting Numbers  572
13.4.3 Discussion 575
13.5 MAP as a Linear Optimization Problem  577
13.5.1 The Integer Program Formulation 577
13.5.2 Linear Programming Relaxation 579
13.5.3 Low-Temperature Limits 581
13.6 Using Graph Cuts for MAP 588
13.6.1 Inference Using Graph Cuts 588
13.6.2 Nonbinary Variables 592
13.7 Local Search Algorithms  595
13.8 Summary 597
13.9 Relevant Literature 598
13.10 Exercises 601
14 Inference in Hybrid Networks 605
14.1 Introduction 605
14.1.1 Challenges 605
14.1.2 Discretization 606
14.1.3 Overview 607
14.2 Variable Elimination in Gaussian Networks 608
14.2.1 Canonical Forms 609
14.2.2 Sum-Product Algorithms 611
14.2.3 Gaussian Belief Propagation 612
14.3 Hybrid Networks 615
14.3.1 The Difficulties 615
14.3.2 Factor Operations for Hybrid Gaussian Networks 618
14.3.3 EP for CLG Networks 621
14.3.4 An “Exact” CLG Algorithm  626
14.4 Nonlinear Dependencies 630
14.4.1 Linearization 631
14.4.2 Expectation Propagation with Gaussian Approximation 637
14.5 Particle-Based Approximation Methods 642
14.5.1 Sampling in Continuous Spaces 642
14.5.2 Forward Sampling in Bayesian Networks 643
xvi CONTENTS
14.5.3 MCMC Methods 644
14.5.4 Collapsed Particles 645
14.5.5 Nonparametric Message Passing 646
14.6 Summary and Discussion 646
14.7 Relevant Literature 647
14.8 Exercises 649
15 Inference in Temporal Models 651
15.1 Inference Tasks 652
15.2 Exact Inference 653
15.2.1 Filtering in State-Observation Models 653
15.2.2 Filtering as Clique Tree Propagation 654
15.2.3 Clique Tree Inference in DBNs 655
15.2.4 Entanglement 656
15.3 Approximate Inference 660
15.3.1 Key Ideas 661
15.3.2 Factored Belief State Methods 662
15.3.3 Particle Filtering 665
15.3.4 Deterministic Search Techniques 675
15.4 Hybrid DBNs 675
15.4.1 Continuous Models 676
15.4.2 Hybrid Models 684
15.5 Summary 688
15.6 Relevant Literature 690
15.7 Exercises 692
III Learning 695
16 Learning Graphical Models: Overview 697
16.1 Motivation 697
16.2 Goals of Learning 698
16.2.1 Density Estimation 698
16.2.2 Specific Prediction Tasks 700
16.2.3 Knowledge Discovery 701
16.3 Learning as Optimization 702
16.3.1 Empirical Risk and Overfitting 703
16.3.2 Discriminative versus Generative Training 709
16.4 Learning Tasks 711
16.4.1 Model Constraints 712
16.4.2 Data Observability 712
16.4.3 Taxonomy of Learning Tasks 714
16.5 Relevant Literature 715
17 Parameter Estimation 717
17.1 Maximum Likelihood Estimation 717
CONTENTS xvii
17.1.1 The Thumbtack Example 717
17.1.2 The Maximum Likelihood Principle 720
17.2 MLE for Bayesian Networks 722
17.2.1 A Simple Example 723
17.2.2 Global Likelihood Decomposition 724
17.2.3 Table-CPDs 725
17.2.4 Gaussian Bayesian Networks  728
17.2.5 Maximum Likelihood Estimation as M-Projection  731
17.3 Bayesian Parameter Estimation 733
17.3.1 The Thumbtack Example Revisited 733
17.3.2 Priors and Posteriors 737
17.4 Bayesian Parameter Estimation in Bayesian Networks 741
17.4.1 Parameter Independence and Global Decomposition 742
17.4.2 Local Decomposition 746
17.4.3 Priors for Bayesian Network Learning 748
17.4.4 MAP Estimation  751
17.5 Learning Models with Shared Parameters 754
17.5.1 Global Parameter Sharing 755
17.5.2 Local Parameter Sharing 760
17.5.3 Bayesian Inference with Shared Parameters 762
17.5.4 Hierarchical Priors  763
17.6 Generalization Analysis  769
17.6.1 Asymptotic Analysis 769
17.6.2 PAC-Bounds 770
17.7 Summary 776
17.8 Relevant Literature 777
17.9 Exercises 778
.....  ...... ......
IV Actions and Decisions 1007
21 Causality 1009
21.1 Motivation and Overview 1009
21.1.1 Conditioning and Intervention 1009
21.1.2 Correlation and Causation 1012
21.2 Causal Models 1014
21.3 Structural Causal Identifiability 1017
21.3.1 Query Simplification Rules 1017
21.3.2 Iterated Query Simplification 1020
21.4 Mechanisms and Response Variables  1026
21.5 Partial Identifiability in Functional Causal Models  1031
21.6 Counterfactual Queries  1034
21.6.1 Twinned Networks 1034
21.6.2 Bounds on Counterfactual Queries 1037
21.7 Learning Causal Models 1039
21.7.1 Learning Causal Models without Confounding Factors 1040
21.7.2 Learning from Interventional Data 1043
xx CONTENTS
21.7.3 Dealing with Latent Variables  1047
21.7.4 Learning Functional Causal Models  1050
21.8 Summary 1052
21.9 Relevant Literature 1053
21.10 Exercises 1054
22 Utilities and Decisions 1057
22.1 Foundations: Maximizing Expected Utility 1057
22.1.1 Decision Making Under Uncertainty 1057
22.1.2 Theoretical Justification  1060
22.2 Utility Curves 1062
22.2.1 Utility of Money 1063
22.2.2 Attitudes Toward Risk 1064
22.2.3 Rationality 1065
22.3 Utility Elicitation 1066
22.3.1 Utility Elicitation Procedures 1066
22.3.2 Utility of Human Life 1067
22.4 Utilities of Complex Outcomes 1069
22.4.1 Preference and Utility Independence  1069
22.4.2 Additive Independence Properties 1072
22.5 Summary 1079
22.6 Relevant Literature 1080
22.7 Exercises 1082
23 Structured Decision Problems 1083
23.1 Decision Trees 1083
23.1.1 Representation 1083
23.1.2 Backward Induction Algorithm 1085
23.2 Influence Diagrams 1086
23.2.1 Basic Representation 1087
23.2.2 Decision Rules 1088
23.2.3 Time and Recall 1090
23.2.4 Semantics and Optimality Criterion 1091
23.3 Backward Induction in Influence Diagrams 1093
23.3.1 Decision Trees for Influence Diagrams 1094
23.3.2 Sum-Max-Sum Rule 1096
23.4 Computing Expected Utilities 1098
23.4.1 Simple Variable Elimination 1098
23.4.2 Multiple Utility Variables: Simple Approaches 1100
23.4.3 Generalized Variable Elimination  1101
23.5 Optimization in Influence Diagrams 1105
23.5.1 Optimizing a Single Decision Rule 1105
23.5.2 Iterated Optimization Algorithm 1106
23.5.3 Strategic Relevance and Global Optimality  1108
23.6 Ignoring Irrelevant Information  1117
CONTENTS xxi
23.7 Value of Information 1119
23.7.1 Single Observations 1120
23.7.2 Multiple Observations 1122
23.8 Summary 1124
23.9 Relevant Literature 1125
23.10 Exercises 1128
24 Epilogue 1131


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:概率图模型 英文版 图模型 independence Presentation

Probabilistic Graphical Models - Principles and Techniques.pdf

6.62 MB

需要: 15 个论坛币  [购买]

本帖被以下文库推荐

strive for the best, prepare for the worst.
沙发
512002855 发表于 2017-9-10 10:57:23 |只看作者 |坛友微信交流群
好厉害,赞一个。
这本书1000多页。

使用道具

藤椅
军旗飞扬 发表于 2017-9-10 10:57:32 |只看作者 |坛友微信交流群
谢谢楼主分享!

使用道具

板凳
WFMZZ 发表于 2017-9-10 11:13:36 来自手机 |只看作者 |坛友微信交流群
飞天玄舞6 发表于 2017-9-10 10:23
AUTHOR:Daphne Koller Nir Friedman

CONTENT
赞。专业书,需要多久才能学完。

使用道具

报纸
阿扁V5 学生认证  发表于 2017-9-13 10:13:43 |只看作者 |坛友微信交流群
专业!!!!

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-4-27 18:52