楼主: a智多星
472 0

基于行为特征学习的互联网流量分类方法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2017-12-29 15:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:基于连接图的互联网流量分类方法能反映主机间的通信行为,具有较高的分类稳定性,但是经验式总结的启发式规则有限,难以获得高分类准确率。研究分析了主机间通信行为模式和BOF方法,从具有相同{目的IP地址,目的端口号,传输层协议}网络流量中,提取主机间连接相关的行为统计特征(HCBF),采用C4.5决策树算法学习基于行为特征的分类规则,其无需人工建立启发式规则。在传统互联网和移动互联网流量数据集上,从基本分类性能和分类稳定性方面,与现有的特征集进行比较分析,实验结果表明,HCBF特征集合的类间区分能力和稳定性较高。

原文链接:http://www.cqvip.com//QK/90580X/201606/669196666.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:互联网 学习的 移动互联网 cqvip HTML 互联网流量分类 行为特征 机器学习 通信行为 网络测量

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-20 21:25