2、解:令
$t=\frac{x^2}{2019},$
$|R|=1,$
$\therefore -\sqrt{2019}< x< \sqrt{2019},$
$\begin{align*}\sum_{n=1}^{\infty }\frac{2n-1}{2019^n}x^{2n}&=2\sum_{n=1}^{\infty }(n+1)t^n-3\sum_{n=1}^{\infty }t^n\\\\&=2(\sum_{n=1}^{\infty }t^{n+1})'-3\sum_{n=1}^{\infty }t^n\\\\&=2(\frac{t^2}{1-t})'-\frac{3t}{1-t}\\\\&=\frac{4t-2t^2}{(1-t)^2}-\frac{3t}{1-t}\\\\&=\frac{t(1+t)}{(1-t)^2}\\\\&=\frac{2019x^2+x^4}{(2019-x^2)^2}.
\end{align*}$


雷达卡
京公网安备 11010802022788号







