2020年全国大学数学竞赛(非数学类)模拟题一
证明:先证收敛。由已知,
$\because \frac{a_{n+1}}{a_n}=\frac{na_n}{1+(1+n)a_n}< \frac{na_n}{(1+n)a_n}<1,$
$\frac{\frac{a_{n+1}}{a_n}}{\frac{a_{n}}{a_{n-1}}}=\frac{a_{n+1}a_{n-1}}{a_n^2}=\frac{na_{n-1}}{1+(1+n)a_n}< 1.$
$\therefore \{\frac{a_{n+1}}{a_n}\}$,单调有界,收敛。
由收敛性,有
$\Rightarrow \frac{a_{n+1}}{a_n}\rightarrow 0,(n \to \infty )$
即
$\exists N,n> N,s.t.\frac{a_{n+1}}{a_n}< \frac{1}{2},$
$a_n< \frac{1}{2}a_{n-1}< \frac{1}{2^2}a_{n-2}< \cdots < \frac{1}{2^n},$
$\therefore na_n< \frac{n}{2^n}\rightarrow 0,(n \to \infty)$
又
$\because a_{n+1}+(1+n)a_{n+1}a_n=na^2_n,$
$\therefore \frac{a_{n+1}}{a_n}=na_n-(n+1)a_{n+1},$
$\displaystyle \sum_{k=0}^{n}\frac{a_{k+1}}{a_k}=2a_1+\sum_{k=0}^{n}(ka_k-(k+1)a_{k+1})=1-(n+1)a_{n+1}.$
所以级数和为
$\displaystyle \sum_{n=1}^{\infty}\frac{a_{n+1}}{a_n}=\lim_{n \to \infty}\sum_{k=0}^{n}\frac{a_{k+1}}{a_k}=1-\lim_{n \to \infty}(n+1)a_{n+1}=1,$